Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a base station. The base station generates a plurality of sets of bits representing downlink control information directed to a plurality of UEs. The each set of bits of the plurality of sets of bits includes a number of information bits and a number of protection bits. The base station also combines the plurality of sets of bits to generate combined bits. The base station further encodes the combined bits to generate encoded bits. The base station subsequently transmits the encoded bits.
Abstract:
Aspects of the disclosure provide a method for transmission of downlink mobile reference signals (MRSs). The method can include transmitting an MRS that includes a first part MRS and an additional part MRS, wherein the first part MRS includes first MRS bursts each multiplexed with a synchronization signal block (SS block), and the additional part MRS includes second MRS bursts and is configurable to be transmitted or not transmitted.
Abstract:
Methods and apparatus are provided for multiplexing DRS within a transmission burst for opportunistic spectrum access. In one novel aspect, DRS is not transmitted in a fractional subframe within a TXOP. In one embodiment, if the starting fractional subframe, which contains initial signal, occurs in a configured DMTC, DRS is transmitted in the first subframe next to the starting fractional subframe. In another embodiment, if DMTC starts from a complete subframe within a TXOP, DRS is transmitted in the first candidate position within a DMTC. In another novel aspect, in the DRS subframe, PDSCH is allocated in the PRBs outside the central PRBs (six or twenty-five PRBs). In one embodiment, the reservation signal can be used to satisfy the requirement of occupied bandwidth and continuity transmission. In another embodiment, the free REs in central PRBs carry the system information when required on the unlicensed band.
Abstract:
Aspects of the disclosure provide an apparatus that includes a receiving circuit and a baseband processing circuit. The receiving circuit is configured to receive signals transmitted from another apparatus to the apparatus and generate digital samples in response to the received signals. The received signals have a plurality of frequency sub-bands allocated as transmission resources. A specific frequency sub-band is allocated to the apparatus to carry data and control information to the apparatus. The baseband processing circuit is configured to receive the digital samples, process the digital samples to generate symbols in the respective frequency sub-bands, and decode the symbols in the respective frequency sub-bands to determine the specific frequency sub-band that is allocated to the apparatus.
Abstract:
A flexible time-frequency grid is proposed. A baseline OFDM format consisting of CP and a following symbol interval is scaled in time to generate a set of extended OFDM frame formats. The set of extended OFDM frame formats is further extended by scaling in bandwidth. The OFDM frame formats and the extended OFDM frame format set are used dynamically in the wireless communication system in accordance to the changes of the communication environment. Furthermore, various methods are proposed to avoid and/or combat performance degradation of the resource elements (REs) interfered by non-orthogonal REs in the neighborhood due to different OFDM symbol configurations in the flexible time-frequency grid.
Abstract:
A method of distributed control achieving fair radio resource access is proposed. The parameters used in a listen-before-talk (LBT) channel access procedure that are used to control how aggressively a node contends for channel access can be called as “Channel Access Transmission Parameters” or CAT parameters. The proposed method uses randomized CAT parameters for each traffic type, and then obtains prioritized access for some nodes at any given time and fair access averaged over a period of time. More specifically, a transmitting node can use more than one set of CAT parameters even for the same traffic type instead of conventional only use one set of CAT parameters for one traffic type. The transmitting node can use a set of CAT parameters according to a fixed schedule, a random rule, or a pseudo-random rule.
Abstract:
A method to allocate physical radio resources for both distributed and localized transmission schemes of ePDCCH and configure common and UE-specific search space for UE is provided. In one embodiment, a UE receives a first high-layer information to determine a first set of PRBs. The UE determines a first set of candidate ePDCCHs within the first set of PRBs, wherein one or more candidate ePDCCHs potentially carries DCI intended for the UE. The UE then decodes the first set of candidate ePDCCHs to obtain the DCI intended for the UE. Similar steps are performed for a second set of candidate ePDCCHs potentially carrying DCI intended for the UE. The allocated radio resources of the candidate ePDCCHs may be distributed or localized and constitute either common or UE-specific search space. Blind decoding complexity is reduced.
Abstract:
A method of performing downlink multiuser superposition transmission (MUST) when different precoders are applied to superposed signals is proposed. For demodulation reference signal (DM-RS) transmission mode, the near-user can estimate the far-user's channel by means of separate DM-RS symbols. For common reference signal (CRS) transmission mode, the near-user can blindly detect code far-user's precoder that is not signaled to the near-user. As a result, even the downlink control information (DCI) format is designed for the situation using the same precoder for superposed signals, the MUST scheme works and the near-user receiver can separate the superposed signal for the far-user.
Abstract:
A method to allocate physical radio resources for both distributed and localized transmission schemes of ePDCCH and configure common and UE-specific search space for UE is provided. In one embodiment, a UE receives a first high-layer information to determine a first set of PRBs. The UE determines a first set of candidate ePDCCHs within the first set of PRBs, wherein one or more candidate ePDCCHs potentially carries DCI intended for the UE. The UE then decodes the first set of candidate ePDCCHs to obtain the DCI intended for the UE. Similar steps are performed for a second set of candidate ePDCCHs potentially carrying DCI intended for the UE. The allocated radio resources of the candidate ePDCCHs may be distributed or localized and constitute either common or UE-specific search space. Blind decoding complexity is reduced.
Abstract:
Methods of multi-point carrier aggregation configuration and data forwarding are disclosed. In one embodiment of the invention, a primary connection is established between a UE and a primary base station in a primary cell with a first UE-ID. A second connection is configured between the UE and a second base station in a secondary cell with a second UE-ID. Component carriers from the primary and the second connections are configured and aggregated. Mobility management functions are performed on the primary connection. In another embodiment of the current invention, a first UE data is received from a primary connection with a UE connecting to a first base station, a second UE data is received from a second base station. The first UE data and the second UE data are combined. A third UE data from a network entity is distributed to the first and the second base station.