摘要:
A method for forming a protective oxide liner to reduce a surface reflectance including providing a hydrophilic insulating layer over a conductive layer; providing an anti-reflectance coating (ARC) layer over the hydrophilic insulating layer; providing an etching stop layer over the anti-reflectance coating (ARC) layer; photolithographically defining a pattern on a surface of the etching stop layer for etching; anisotropically etching at least one etch opening extending at least partially through a thickness of the hydrophilic insulating layer; depositing an oxide liner such that the sidewalls and bottom portion of the at least one etch opening and said surface are covered by the oxide liner; and, removing the oxide liner from aid surface according to a chemical mechanical (CMP) process to a surface reflectance.
摘要:
Within a damascene method for forming a patterned conductor layer having formed interposed between its patterns a dielectric layer formed of a comparatively low dielectric constant dielectric material method, there is employed a hard mask layer formed upon the dielectric layer. The hard mask layer is formed employing a plasma enhanced chemical vapor deposition (PECVD) method in turn employing an organosilane carbon and silicon source material, a substrate temperature of from about 200 to about 500 degrees centigrade and a radio frequency power of from about 100 to about 500 watts per square centimeter substrate area. The hard mask layer provides for attenuated abrasive damage to the dielectric layer.
摘要:
A method and apparatus for depositing a low dielectric constant film by reaction of an organosilicon compound and an oxidizing gas at a constant RF power level from about 10 W to about 200 W or a pulsed RF power level from about 20 W to about 500 W. Dissociation of the oxidizing gas can be increased prior to mixing with the organosilicon compound, preferably within a separate microwave chamber, to assist in controlling the carbon content of the deposited film. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop and an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers. A preferred oxidized organosilane film is produced by reaction of methylsilane, CH3SiH3, dimethylsilane, (CH3)2SiH2, or 1,1,3,3-tetramethyl-disiloxane, (CH3)2—SiH—O—SiH—(CH3)2, and nitrous oxide, N2O, at a constant RF power level from about 10 W to about 150 W, or a pulsed RF power level from about 20 W to about 250 W during 10% to 30% of the duty cycle.
摘要:
A method and apparatus for depositing a low dielectric constant film by reaction of an organosilicon compound and an oxidizing gas at a constant RF power level from about 10 W to about 200 W or a pulsed RF power level from about 20 W to about 500 W. Dissociation of the oxidizing gas can be increased prior to mixing with the organosilicon compound, preferably within a separate microwave chamber, to assist in controlling the carbon content of the deposited film. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop and an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers. A preferred oxidized organosilane film is produced by reaction of methylsilane, CH3SiH3, or dimethylsilane, (CH3)2SiH2, and nitrous oxide, N2O, at a constant RF power level from about 10 W to about 150 W, or a pulsed RF power level from about 20 W to about 250 W during 10% to 30% of the duty cycle.