Abstract:
This disclosure includes systems and methods for determining the location of each of a plurality of STAs of a WLAN where an AP measures the round-trip time (RTT) and the angle of arrival (AOA) to each STA from implicit packet exchange, such as data frame and ACK frame. The AP may then report the RTT and AOA measurements to each STA using a dedicated beacon information element (IE) which multicasts RTT and AOA measurements to the STAs. By employing an additional parameter, namely, angle of arrival AOA, a single AP may compute the two-dimensional location of each associated STA. Further, another beacon IE may multicast mapping of the AIDs to MAC addresses so that the associated STAs can understand such mapping for STAs in a network so that one STA may know the location of other STAs. Encryption may be employed to achieve privacy.
Abstract:
Techniques disclosed can help mitigate errors due to clock drift in the determination of round trip time (RTT) from a message exchange between two mobile stations. The techniques involve reducing the time (and, therefore, the drift) over which RTT is computed. Such techniques can be used with clock-synchronizing and/or other methods for reducing RTT errors to provide RTT calculations far more accurate than traditional methods.
Abstract:
Systems, methods, and apparatuses for full duplex communication on a wireless network are disclosed. In one aspect, one or more lists of non-effecting nodes are determined for one or more devices on the wireless network. A list of non-effecting nodes for a device identifies other network nodes or devices whose transmissions do not cause substantial interference with the device. When a full duplex communication is scheduled on the wireless network, a downlink message transmitted to the device may be performed concurrently with an uplink transmission from one of the non-effecting devices. This full duplex communication may be possible even if the device does not inherently support full-duplex communication on the wireless network.
Abstract:
Disclosed are systems, methods and devices for obtaining round trip time measurements for use in location based services. In particular implementations, a fine timing measurement request message wirelessly transmitted by a first transceiver device to a second transceiver device may permit additional processing features in computing or applying a signal round trip time measurement. Such a signal round trip time measurement may be used in positioning operations.
Abstract:
Described are a system and method for a first wireless access point to compute timing parameters of neighboring access points based, at least in part, on beacon signals transmitted the neighboring access points. The first wireless access point may the broadcast the computed timing parameters to mobile devices. A mobile device having received the computed timing parameters may then compute an estimate of its location based, at least in part, on subsequently acquired beacon signals transmitted from the first access point and/or neighboring access points.
Abstract:
Disclosed are systems, methods and devices for application of estimating a apposition of a mobile device based, at least in part, on measuring differences of times of arrival of data packets transmitted to the mobile device from transmitters. In specific implementations, time-staggered quasi-matched filter correlators may applying a known waveform or data sequence to a payload of a received data packet to detect a correlation peak or correlation maximum corresponding to a time of arrival of the received data packet.