Abstract:
A first access point (AP) detects a communication between a client device and a second AP. The first AP determines at least one criteria for AP steering is satisfied. AP steering is then used by the first AP to cause the client device to associate with the first AP, or a particular network of the first AP. For example, the first AP may transmit a disassociation message to the client device. The disassociation message may identify the second AP associated with the client device and cause the client device to disassociate from the second AP. After the client device disassociates from the second AP, the client device may select and associate with the first AP. The first AP may manage which network the client device associates with using a blacklist at the first AP.
Abstract:
A hybrid device can be configured to execute operations to select singleton coordinating functionality in a hybrid communication network. In one embodiment, a single master device (e.g., a hybrid device configured as both a registrar and a central access point (CAP)) can be selected. The hybrid device can transmit search messages to detect an existing master device and/or to identify other hybrid devices contending to become the master device. The hybrid device with the preferred device identifier is selected as the master device. In another embodiment, operations for selecting the coordinating functionality are split into two independent stages—a CAP selection stage and a registrar selection stage. In the CAP selection stage, the hybrid device with a preferred device weight (or a preferred device weight and a preferred device identifier) is configured as the CAP. In the registrar selection stage, similar operations can be executed to select the registrar.
Abstract:
A hybrid device can implement functionality to automatically configure itself to form a home network with other network devices. If it is determined that the hybrid device is the central access point of a hybrid network, operating parameters are determined for the central access point. The central access point can then operate in conjunction with other non-CAP hybrid devices of the hybrid device to determine how to configure the non-CAP hybrid device. The configuration of the non-CAP hybrid device can be determined based, at least in part, on a communication link performance measurement between the CAP and the non-CAP hybrid device. Furthermore, the hybrid network can also be monitored to ensure that the hybrid devices do not repeatedly or randomly switch between different configurations.
Abstract:
Systems and methodologies are described that segment or concatenate radio link control (RLC) service data units (SDUs) into RLC protocol data units (PDUs). In accordance with various aspects set forth herein, systems and/or methods are provided that receive a first RLC SDU, partition the first RLC SDU into a first RLC PDU and a second RLC PDU, set a length indicator (LI) field associated with the second RLC PDU to indicate the size of information contained in the second RLC PDU, concatenate the second RLC PDU with a third RLC PDU associated with a second RLC SDU to form a concatenated RLC PDU, and dispatch the first RLC PDU, the concatenated RLC PDU, and a fourth RLC PDU associated with the second RLC SDU.
Abstract:
Systems and methodologies are described that facilitate selecting an uplink carrier for random access within a wireless environment having multiple carriers. Selection of an uplink carrier for random access can be randomly selected from a set of available uplink carriers. Additionally, the uplink carrier for random access can be selected based upon which uplink carrier is paired with an anchor carrier. Further, the uplink carrier for random access can be identified based upon a bandwidth related to the user equipment (UE). Reference signals can also be employed in order to identify an uplink carrier to perform random access.
Abstract:
Disclosed are techniques for wireless communication. In an aspect, an access point (AP) communicates with at least one wireless station (STA) and supporting a plurality of communication devices and communication modes on a communication medium, establishes a single-link communication mode with the at least one wireless STA and at least one communication device of the plurality of communication devices over a single-link, establishes a multi-link communication mode with the at least one wireless STA and the at least one communication device over a multi-link, and dynamically transitions between the single-link communication mode and the multi-link communication mode based upon a determination related to a best mode of delivery for a next period.
Abstract:
This disclosure provides methods, devices and systems related multi-link wireless communication. A method may include establishing, between the first WLAN device and a second WLAN device, a multi-link association that enables a first wireless communication link and a second wireless communication link. The method may include determining a temporal key for the multi-link association. The method may include encrypting a first and second media access control (MAC) protocol data unit (MPDU) based on the temporal key. The method may include preparing a first frame including the encrypted first MPDU and a second frame including the encrypted second MPDU. The method may include assigning packet numbers from a set of sequential packet numbers to the first and second frames. The method may include transmitting the first frame over the first wireless communication link and the second frame over the second wireless communication link.
Abstract:
A transmitting (Tx) access point (AP) multi-link device (MLD) may be configured to designate a parent ML element and at least one child ML element in the network management frame, e.g., the beacon frame or probe response frame, and at least one non-AP MLD may be configured to receive the network management frame and apply the parent ML element to the child ML element.
Abstract:
This disclosure provides systems, methods, and apparatuses for associating a wireless communication device such as a wireless station (STA) of a STA multi-link device (MLD) with an access point (AP) MLD that includes a first AP associated with a first communication link of the AP MLD and includes one or more secondary APs associated with one or more respective secondary communication links of the first AP MLD. The first AP includes one or more virtual APs, and the first AP and the one or more virtual APs of the first AP belong to a first multiple basic service set identifier (BSSID) set associated with the first communication link. The AP MLD transmits a frame including a first element carrying discovery information for the first AP and the one or more virtual APs belonging to the first multiple BSSID set, and including a second element carrying discovery information for the one or more secondary APs of the first AP MLD associated with the one or more respective secondary communication links of the first AP MLD.
Abstract:
This disclosure provides methods, devices and systems for non-simultaneous transmit and receive (STR) station (STA) transmissions using multiple links. In one aspect, a medium synchronization delay timer associated with a second link of the non-STR STA can be initiated in response to completing transmission of the data on the first link to delay triggering of a clear channel assessment (CCA) associated with the second link. Data can be transmitted on the second link in response to expiration of the medium synchronization delay timer. In another aspect, an energy detect (ED) threshold level on a second link may be decreased from a first ED threshold level to a second ED threshold level after transmitting the data on the first link. In a further aspect, a block acknowledgment (BA) frame including a network allocation vector (NAV) synchronization of a second access point may be transmitted to the first link of the station.