Abstract:
A device receives a request from a controlling device, such as a remote control, smart phone, or the like, where the request is intended to have one or more target devices perform one or more functional operations. The device responds to the request by applying the optimum methodology to propagate one or more commands to each intended target appliance to cause each intended target appliance to perform the intended one or more functional operations.
Abstract:
A system and method for configuring a remote control to command the operation of appliances, to capture demographic data, and to provide services, such as automated warranty registration, instructions, viewing guides, etc., relevant to the appliances is provided. The system includes a database and associated server that are located remotely from the remote control and accessible via a network connection. Command codes, graphical user interface elements, and services are accessed and downloaded to the remote control, as appropriate, using data supplied to the server that identifies the appliances and/or functional capabilities of the appliances. This data can be supplied by the appliances directly or can be obtained from other sources such as barcode labels, network devices, etc.
Abstract:
A controlling device such as a remote control has programming for transmitting a signal response to a plurality of control environments, each environment including a signaling device. Each signaling device in receipt of the signal request sends a signal response having a unique ID which is chosen to be characteristically attenuated by the surroundings of the environment. Because the controlling device can only be in one environment at a given time, and given the attenuation characteristics of the signal response from each signaling device, only one signal response will be received by the controlling device in each environment. Location definitions associated with the received unique ID may be used by programming in the controlling device to recall saved devices states, commands sets, macros, and even to dynamically generate commands based on the location information.
Abstract:
A state of a system having a plurality of appliances is controlled by using a device discovery process to establish a listing of each of the plurality of appliances in the system. The listing of each of the plurality of appliances is then used, with reference to a command and/or protoctol database, to configure a software agent to exchange communications, via a one or more communication channels, with each of the plurality of appliances. An action triggering state of at least one of the plurality of appliances is associated with an action. The action is performed when it is determined that a current state of the at least one of the plurality of appliances corresponds to the action triggering state.
Abstract:
An entertainment device is used to notify a user of a change in an audio visual entertainment system configuration in which at least one of a plurality devices is connected to the entertainment device as an audio and/or visual source and at least one of the plurality of devices is connected to the entertainment device as an audio and/or visual output destination for the entertainment device and/or to notify a user of a perceived problem in a configuration of a controlling device used to control functional operations of the audio visual entertainment system.
Abstract:
A system and method for configuring a remote control to command the operation of appliances, to capture demographic data, and to provide services, such as automated warranty registration, instructions, viewing guides, etc., relevant to the appliances is provided. The system includes a database and associated server that are located remotely from the remote control and accessible via a network connection. Command codes, graphical user interface elements, and services are accessed and downloaded to the remote control, as appropriate, using data supplied to the server that identifies the appliances and/or functional capabilities of the appliances. This data can be supplied by the appliances directly or can be obtained from other sources such as barcode labels, network devices, etc.
Abstract:
A media access device such as, for example, a cable or satellite set top box (STB), a digital video recorder (DVR), a personal computer, and/or a digital media receivers automatically optimizes an order of content choices presented in a content listing, such as a program guide display, favorite channel display, and/or a recording listing display based on the past viewing and/or recording history of a current user.
Abstract:
A set of media playback and device settings data from each home appliance of a first set of home appliances is stored on a central server and/or sent to a remote control device upon initiation of a suspend command by a user. The stored media and devices states may be used at a later time to control the first set of home appliances, or a user may, after relocating to a second set of home appliances, initiate a resume state command whereupon media playback and device settings data from the central server and/or remote control device controls each home appliance in the second set of home appliances to bring about the same or substantially similar media and device states as in the first set of home appliances.
Abstract:
A system and method is used to provision an app to a smart device for use in connection with an appliance. A presence of the appliance on a wireless network which includes the smart device is detected and data received from the appliance is used to initiate a retrieval of the app. When the retrieved app is installed on the smart device the app is usable with the smart device to provide at least an interface between the smart device and the appliance. In some circumstance, installation of the app on the smart device may also include causing the app to be synchronized with a corresponding app that was prior installed on another smart device capable of communicating with the appliance.
Abstract:
A system and methods for facilitation of user interactions with an electronic device. A number of user interface methods are described and may be used alone or in combination with one another to present an enhanced interface to a user. A method of providing user interaction using a compact status indicator is described. A method for providing a virtual scroll wheel to a user for interaction with content sets is described. A method for allowing a user to dynamically modify a scalable user interface is described. A method for providing gesture based input to a user via a virtual gesture pad is described. A method of providing an interactive graphic search query interface is described. A method for indicating and selecting available content type is described.