Abstract:
A voice mail system is provided in a CDMA wireless telephone system in which a base station controller (BSC) stores, in a encoded format, voice data transmitted by a wireless telephone to a receiving telephone, either wireless or fixed telephone, when the receiving telephone does not "pick up". Also, the base station controller encodes and then stores voice data that is transmitted by a fixed telephone to a wireless telephone when the wireless telephone does not "pick up". In either case, to retrieve voice mail the intended recipient can access the voice mail from a fixed telephone, in which case the voice mail is decoded at the BSC and then sent to the fixed telephone via a landline. Alternatively, the intended recipient can access the voice mail from a wireless telephone in the system, in which case the voice mail is not decoded at the BSC, but is transmitted directly to the wireless telephone, where the message is decoded. In any case, the voice mail undergoes only a single encoding/decoding process, thereby improving the sound quality of the retrieved voice mail messages compared to systems in which tandem vocoding occurs.
Abstract:
A novel and improved method and apparatus for coherently processing a CDMA signal without the use of pilot or other synchronization information is described. By utilizing a coherent receive processing system, a reverse link signal can be properly processed when received at a lower power level than that associated with noncoherent only processing. This reduces the transmit power necessary for successful communication, and this reduction in necessary transmit power reduces the degree to which a set of subscriber units communicating with the same base station interfere with one another. In turn, this increases the overall system capacity of a CDMA wireless telecommunication system incorporating the invention.
Abstract:
A frequency synthesizer which uses a direct digital synthesizer (DDS) to generate a highly accurate periodic signal of a frequency selected from a plurality of reference frequencies. The DDS output signal is bandpass filtered and amplitude limited to reduce spurious noise. In one embodiment, the DDS frequency synthesizer is coupled to a phase lock loop which receives the DDS generated reference signal and a divide-by-N signal for generating an output signal at a frequency determined by the divide-by-N signal. The frequency resolution of the phase lock loop is N times the reference signal. In a second embodiment, the DDS is incorporated within the feedback path of the phase lock loop. An input reference frequency signal is provided to the phase lock loop with the DDS clock signal provided as a function of the phase lock loop output frequency. The DDS receives an input frequency control signal which determines the DDS step size. The synthesizer output frequency is a function of the input reference frequency, the number of bits in the digital word of the frequency control signal and the DDS step size as determined by the frequency control signal. Optional dividers may be provided in the feedback path which may further affect the synthesizer output frequency.
Abstract:
A method and system for determining the position of an object using a fixed station and a plurality of earth orbit satellites whose positions are known. Separate periodic signals are transmitted from the fixed station via first and second satellites to the object whose postion is to be determined. The phase offset in periodic characteristics of the periodic signals as received from the first and second satellites is measured at the object. The phase offset corresponds to a relative time difference in propagation of the signals traveling two different paths to the object. The object transmits via the first satellite a return signal indicative of the measured relative time difference. This return signal is activated some time in the future according to the object local time, which is slaved to receipt of the periodic signal sent through the first satellite. This future time is the start of the particular time period as decided by the fixed station's schedule. At the fixed station, an instantaneous round trip delay, determined by the time offset of the current transmission clock time relative to the receive clock time of reception of the return signal, along with the measured relative time difference sent back on the return signal, is used to calculate the distances between the first and second satellites to the object. From these distances the position of the object is calculated.
Abstract:
A method and apparatus for converting phase data into amplitude data. Input phase data is divided into upper and lower phase increments using an input splitter which can also fold in quadrant data. One or more storage elements, such as sine and cosine ROMs, are connected to the input splitter and generate an amplitude, which forms one of a plurality of series terms, and first and second derivatives of the amplitude in response to the upper phase increment. The first derivative and lower phase increment are multiplied together in a digital multiplier to produce a second series term. A third series term comprising a product of the amplitude and lower phase increment squared, is generated by a term generator connected to the splitter and to the storage element. The term generator can comprise elements such as a ROM addressable by the lower phase increment and the amplitude. The first, second and third series terms are subsequently added together by one or more digital adders connected to the multiplier, term generator, storage element and in series with each other to form an output amplitude. An output controller is used for transferring the output amplitude to other apparatus and for incorporating quadrant unfolding elements.
Abstract:
A multiple access, spread spectrum communication system and method for providing high capacity communications to, from, or between a plurality of system users, using code-division-spread-spectrum communication signals. The communication system uses means for providing marginal isolation between user communication signals. The marginal isolation is provided by generating simultaneous multiple steerable beams; using an omni-directional antenna with polarization enhancement; using power control devices to adjust the output power for user generated communication signals either in response to their input activity level, or in accordance with a minimum allowable power for maintaining a communication link. The communication system can also employ a means for transmitting a predetermined pilot chip sequence contiguous with the code-division-spread-spectrum communication signals.In further embodiments the communication system employs a plurality of user terminals linked to each other or to other services through one or more terrestrial or satellite repeaters. Multiple satellite repeaters are operable in a new communication mode to obtain further gains in signal isolation.
Abstract:
Techniques for supporting communication for different user equipments (UEs) on different system bandwidths are described. In one design, a base station transmits first control information to support communication for at least one first UE on a first system bandwidth and transmits second control information to support communication for at least one second UE on a second system bandwidth, which overlaps the first system bandwidth. The base station transmits data to the first and second UEs on the first and second system bandwidths, respectively. In one design, the base station receives third control information from the first UE(s) and fourth control information from the second UE(s) on a third system bandwidth. The base station receives data from the first UE(s) on the third system bandwidth and receives data from the second UE(s) on a fourth system bandwidth, which overlaps the third system bandwidth.