Abstract:
Methods and apparatuses for capturing and recovering unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be captured at an extendable boom. The boom can be extended to deploy a recovery line to retrieve the aircraft in flight. The boom can be retracted when not in use to reduce the volume it occupies. A tension device coupled to the recovery line can absorb forces associated with the impact of the aircraft and the recovery line.
Abstract:
There is provided an Unmanned Air Vehicle (UAV) including an engine and an airframe, including means for performing a deep stall maneouvre; at least one inflatable sleeve connected or connectable to the airframe, and means for inflating the sleeve during flight, wherein the inflated sleeve extends along the lower side of the airframe so as to protect same during deep stall landing. A method for operating an Unmanned Air Vehicle (UAV), including an engine and an airframe is also provided.
Abstract:
A modular automated air transport system comprising an unmanned autonomous aircraft having a selectively detachable control systems portion and a structural air frame portion, wherein the structural air frame portion contains an interior cargo hold, aerodynamic members having control surfaces and at least one propulsion device attached to the structural air frame portion; and wherein the control system portion includes a control computer for autonomously controlling the flight of said air transport system from one known location to a second known location.
Abstract:
A powerplant system for a vehicle such as a hybrid UAV includes a miniature gas turbine engine and a gearbox assembly. The engine is mounted to the gearbox assembly through a support structure which provides for pivotal movement of the engine relative thereto. The input gear is engaged with two gears such that the pivoted engine arrangement permits the input gear to float until gear loads between the input gear and the first and second gear are balanced. Regardless of the gear teeth errors or gearbox shaft misalignments the input gear will float and split the torque between the two gears.
Abstract:
A system for launching, refuelling and recovering in flight an aircraft (10) such as an unmanned aerial vehicle (UAV) from a larger carrier aircraft (16) comprising a holder (22) on the carrier aircraft (16) to which the UAV (10) is detachably connectable and an extendable and retractable refuelling device (23, 24) on the carrier aircraft (16) detachably connectable to the UAV (10) whereby to launch the UAV it is disconnected from the holder (22), the refuelling device (23, 24) is extended with the UAV connected thereto to cause the UAV to trail behind the carrier aircraft and the UAV is then disconnected from the refuelling device.
Abstract:
An unmanned aerial vehicle, such as a remotely-piloted airplane, includes lift-producing wings that have batteries embedded or otherwise located within them. Locating the batteries within the wings allows more efficient use of the interior space of the unmanned vehicle. Space within a fuselage of the vehicle, which would otherwise be used for batteries, may be used for other components. Alternatively, fuselage, weight and/or size of the unmanned aerial vehicle may be reduced. In addition, locating the batteries within the wings may provide better structural performance of the wings, and/or may allow characteristics of the wings, such as inertia and moments, to be optimized.
Abstract:
VTOL micro-aircraft comprising a first and a second ducted rotor mutually aligned and distanced according to a common axis and whose propellers are driven in rotation in mutually opposite directions. Between the two ducted rotors are positioned a fuselage and a wing system formed by wing profiles forming an X or an H configuration and provided with control flaps.
Abstract:
A system for launching, refuelling and recovering in flight an aircraft (10) such as an unmanned aerial vehicle (UAV) from a larger carrier aircraft (16) comprising a holder (22) on the carrier aircraft (16) to which the UAV (10) is detachably connectable and an extendable and retractable refuelling device (23, 24) on the carrier aircraft (16) detachably connectable to the UAV (10) whereby to launch the UAV it is disconnected from the holder (22), the refuelling device (23, 24) is extended with the UAV connected thereto to cause the UAV to trail behind the carrier aircraft and the UAV is then disconnected from the refuelling device.
Abstract:
A circular VTOL aircraft with a central vertically mounted jet or rocket engine 7, (or engines) having below vertical thrust vents 14 at cardinal points, together with a jet/rocket engine 20 (or engines) horizontally mounted on turntable pod 16 which is steerable through 360 degrees and centrally situated below the vertical engine (s). Alternatively the horizontal engine can be replaced by central thrust vent 36 delivering thrust from the vertical engine to vectored thrust nozzle 37 attached to the turntable. Thrust from the four vertical thrust vents is controlled by valves 21 giving VTOL thrust control as well as pitch and bank control. The horizontal engine provides acceleration and retro-thrust for horizontal flight and directional control through 360 degrees. The passenger cabin is situated in the main body of the aircraft. Fuel tanks are installed around the central engines. The flight-deck is situated at the top-centre of the craft above the engines, which are detachable for maintenance.
Abstract:
An airship system according to the invention has an airship (110), a base station (120), and at least three measurement points. The airship (110) emits ultrasonic waves upon receiving an instruction from the base station (120). Measurement point units (S1-S3) receive the ultrasonic waves, and thereby measure distances from the airship (110) to the respective measurement points. An MPU that is incorporated in the base station (120) calculates a position of the airship (110). The base station (120) controls a route of the airship (110) based on the calculated position by sending a flight instruction to the airship (110). In this manner, an airship system can be provided that makes it unnecessary for an operator to pilot the airship and that can reduce the load weight and the power consumption of the airship.