Abstract:
A technique for operating a movable radio base station, M-RBS, (200) is described. The M-RBS is configured to provide to a plurality of user equipments (120) wireless access to a telecommunications network (100). As to a method aspect of the technique, the M-RBS (200) is changed from a first mode to a second mode that is different from the first mode. Each of the first mode and the second mode specifies a set of parameter values for operating parameters of the M-RBS (200).
Abstract:
Embodiments are provided for deliver information to a transportation apparatus via a UAV network. After the transportation apparatus enters an area, one or more UAVs may be configured to capture one or more images of an interior of the transportation apparatus. Information regarding the transportation apparatus can be collected by the UAV(s), such as the make and multimedia presentation capability of the transportation apparatus, in response to the images being received. Image analysis may be employed to analyze the images to obtain passenger and/or driver information. Based on the information regard the transportation apparatus, and passenger and/or driver information, one or more items can be determined for presentation to the passenger(s) and/or driver(s) in the transportation apparatus. The one or more items may include local information of interest to the passenger(s) and driver(s). The one or more items can be transmitted to transportation apparatus for presentation.
Abstract:
Systems and devices may include a thermal management device that includes a high emissivity material. The high emissivity material is configured to have a high emissivity with respect to wavelengths of electromagnetic radiation in a thermal infrared spectrum. The thermal management device is arrangeable on a surface of a component of a stratospheric aerial vehicle. The thermal management device is configured such that when arranged on the component of the stratospheric aerial vehicle during flight, a first side of the thermal management device faces substantially upward with respect to ground, and the second side of the thermal management device faces substantially downward with respect to the ground. The second side is shaped to retain air that is warmer than an ambient air temperature at a stratospheric altitude.
Abstract:
Apparatus, systems, and methods are disclosed for determining dynamic positioning of mobile cells. Dynamic positioning provides for navigating a mobile cell, such as an unmanned aerial vehicle or the like, to a location suitable for offloading current network traffic, such that the suitable location maximizes offloading capabilities. The methodology describes takes into account both the current traffic load on the network and the location of the highest system capacity-intensive mobile terminals in determining an initial position for deploying the mobile cell. Additionally, the location of the deployed mobile cell is optimized, over time, based on tracking the direction of movement of the highest capacity-intensive mobile terminals, and, in some embodiments, service quality indicators provided by the mobile terminals and/or contextual information captured by the mobile cell apparatus.
Abstract:
Methods, apparatuses, and systems for organizing data delivering unmanned aerial vehicles (UAVs) are provided. Inter-cluster coordinators can organize data delivering unmanned aerial vehicle base stations (UAV-BSs). Various beamforming techniques (e.g., LZFBF and ZFBF) can be incorporated, and the inter-cluster coordinator can operate on a base station that serves as a controlling network node.
Abstract:
Systems and methods for detecting an unmanned aerial vehicle (UAV). Network access (for example, to the Internet) may be provided by detecting a UAV and fixing one or more beams from one or more ground terminals to the UAV. In one embodiment, the detection of a UAV includes forming and pointing beams from a ground terminal and ground gateways toward the UAV. The ground terminal may be configured to autonomously steer its antenna beam during initial installation to detect the reference signal from a UAV. In one variant, the ground terminals are steered to more finely track the position of the UAV based on a signal quality metric such as received signal strength. In one embodiment, the ground terminal antenna is initially manually pointed toward the UAV, and thereafter allowed to automatically steer to track the position of the UAV.
Abstract:
Systems and methods are provided that couple one or more devices to one or more user interfaces and to one or more servers via network connections allowing a human operator to provide tailored content to an autonomous or semi-autonomous robotic agent that is responsive to human interpretable commands. Various devices can be identified on a network and location data regarding each of the mobile devices can be delivered to the servers. Data can be displayed on a user interface that is a presentation screen based on mobile devices in its proximity, for example.
Abstract:
A method and apparatus for use in an ad hoc network, comprising: a node transmitting an extended allowable hold time value to a further node; the node changing its transmission behavior such that the further node stops receiving transmission from the node for an extended period, for example by pausing transmission at least in the direction of the further node; and the further node treating the link to the node as intact during the extended allowable hold time. The transmitting of the extended allowable hold time value may be performed earlier than a next routine transmission of routine allowable hold time value would have been sent. The method may further comprise the node being instructed to maintain topology information for an extended time.
Abstract:
The systems and methods are provided to provide communication coverage to an unmanned aerial vehicle. A proposed flight path of a UAV may be collected, and a communication signal distribution, such as a cellular signal distribution, along the proposed flight of the UAV may be determined. At positions having low or no communication signal, relays may be provided to improve a quality of the communication signal. The relay may be a ground device or an aerial vehicle. A stable and continuous communication between the UAV and user terminals during the entire flight path of UAV may be provided, and a coverage of cellular signal may be expanded.
Abstract:
A system of using a drone for network connectivity, the system may comprise: a connectivity module to: detect an error associated with network traffic on a network connection utilized by a user device; query a connection datastore to retrieve at least one access point location that at least one device of the user has utilized within a predetermined period; a drone coordination module to: transmit configuration settings to a drone, the configuration settings including the at least one access point location and a mode of operation for the drone; and route at least a portion of the network traffic of the user device to the drone for transmission according to the configuration settings.