Abstract:
A major object of the present invention is to compensate for variations in springback angle resulting from variations in material properties from one lot to the next, for the realization of high angle accuracy bending. Based on the difference between a workpiece actual bend angle detected during bending and an estimated bend angle of a workpiece W at an arbitrary penetration point of an upper die 5, a correction value for prestored data relating to a springback behavior under a processing condition is obtained. Based on the correction value, a final penetration point of the upper die 5 is obtained.
Abstract:
Both a method and apparatus are disclosed for forming a bend in an elongated member, such as a tube, at a predetermined target angle. The elongated member is first bent to an angle equal to the target angle plus a predetermined increment. The elongated member is then returned to the target angle and a value representative of the force necessary to maintain the elongated member at the target angle is inputted into a central processor. This inputted value is then compared with a threshold value and, in the event that the inputted value exceeds the threshold value, the predetermined increment is incremented and the above steps are repeated until the inputted value is less than the threshold value. An apparatus for performing the method of the present invention is also disclosed.
Abstract:
A method and device for folding a metal sheet to a well-defined angle, in which the sheet is deformed in the recess of a die through a punch being moved above the recess and pressing on the sheet, towards the die, until it reaches a well-defined end position. The movement of the punch is regulated as a function of the folding force and of the folding angle. The punch is moved in the direction of the die until it is in an end position Ya corresponding to: Ya=Yt-dYw-dYr in which Yt is a calculated position, dYw is determined through extrapolation of the course of the folding angle as a function of the position of the punch, and dYr is the correction of the position of the punch which is necessary to compensate for the spring-back of the sheet.
Abstract translation:PCT No.PCT / BE94 / 00052 Sec。 371日期1996年6月24日 102(e)日期1996年6月24日PCT 1994年8月26日PCT公布。 出版物WO95 / 05905 日期1995年3月2日一种用于将金属片折叠到明确定义的角度的方法和装置,其中片材通过在凹部上方移动并在片材上压制的冲头在模具的凹部中变形,朝向模具 ,直到达到一个明确定义的最终位置。 作为折叠力和折叠角度的函数调节冲头的移动。 冲头沿模具的方向移动,直到它处于对应于:Y y = Y t-d Y w-d Y r的终点位置Y,其中Yt是计算的位置,dYw是通过外推折叠角度的程度来确定的 打孔位置的功能,dYr是校正冲头的位置,该位置是补偿纸张弹回的必要条件。
Abstract:
A system for adjusting the gram load, static attitude roll and radius geometry of a suspension with a high degree of accuracy and repeatability includes a clamp, load-engaging member, actuator, laser and control system. The mounting region of the suspension to be adjusted is releasably received and clamped by a clamp. A load beam of the suspension is engaged and supported at adjust positions with respect to the clamp by the load beam-engaging member. The load beam-engaging member is driven and positioned by the actuator. IR light from the laser is directed to the spring region of the suspension by optical fibers. The control system includes a pre-adjust input terminal, memory and a controller. Information representatives of a measured pre-adjust fly height gram load, static attitude roll and radius geometry values of the suspension are received at the pre-adjust input terminal. Adjust data representative of load beam adjust positions which will cause the suspension to have a desired post-adjust fly height gram load, static attitude roll and radius geometry values after the load beam is stressed relieved is stored in the memory. The controller is coupled to the pre-adjust input terminal, actuator, laser and memory, and controls the system by: 1) accessing the memory as a function of the measured pre-adjust fly height gram load, static attitude roll and radius geometry values to determine the load beam adjust position which will cause the suspension to have the desired fly height gram load, roll and radius geometry values after the load beam is stressed relieved, 2) actuating the actuator and causing the load beam-engaging member to position the load beam at the adjust position, 3) actuating the laser to stress relieve the spring region of the load beam while the load beam is positioned at the adjust position, and 4) actuating the actuator and causing the load beam-engaging member to release the load beam after the load beam is stress relieved.
Abstract:
A method is disclosed for developing the contour of tools employed for forming members exhibiting complex shapes. The members may be precipitation, heat treatable, metals or metal alloys which are age formed, although they be of any material which exhibits a relationship between a strain applied by a forming tool, or otherwise, and a resulting strain after release of the applied strain. The resulting member may be formed to the desired contour as a result of exposure to an elevated temperature but the member may also be cold formed. The invention is particularly concerned with a methodology for simplifying the analysis of integrally stiffened structures of complex shape. The method of the invention assures proper results on the first occasion the tool is used, thereby resulting in considerable savings of labor and material.
Abstract:
An optimized bump and offset along the spring section of a load beam of a head-gimbal assembly ("HGA") in the loaded state redistributes the mass and stiffness distributions of the load beam from a truly flat state, so that the mode shape of the first torsional resonance mode is changed such that the coupling between a drive actuator head arm and the head slider is essentially eliminated. A fabrication method to produce the desired bump and offset, and a characterization method to ascertain that optimized bump and offset parameters have been achieved are also disclosed. By optimizing bump and offset, the slider remains independent from any load beam first torsional vibration even at resonance and/or sway mode resonant frequency of the HGA may be increased.
Abstract:
A method for indirect detecting of folding angles (.beta.) of a metal sheet (4) during the folding by a folding machine (1) which has a punch (2), and a die (3) provided with a depressed seat (5) is disclosed. The folding angle (.beta.) is obtained by algebraic summing of an angle (.alpha.) formed by adjacent two walls (10, 10, 13, 13, 13a, 13b) of the punch (2) or the seat (5) and each angle (.alpha.1, .alpha.2) between a portion (7, 8, 8a) of the metal sheet (4) and the said wall. The angles (.alpha.1, .alpha.2) formed between the said portion (7, 8, 8a) and each wall (10, 13, 13a, 13b) are calculated by using the measurements of the distances (D1, D2, D3, D4) from the wall to the portion measured at desired two points on the wall. The distances are detected by a device such as differential transformers (18, 19, 20) and pneumatic gauges (50, 51, 52, 53, 54, 55) incorporated in the punch (2) or the die (3). The angle (.beta., .beta.1, .beta.2) once achieved is calculated during the folding operation after elastic restoring of the metal sheet has been caused. If the angle calculated is less than the desired, a supplementary folding is carried out to achieve a precise folding angle. The whole folding is carried out by a single folding operation without requiring a second positioning of the metal sheet.
Abstract:
Process and apparatus for monitoring the backspringing of an elongated deformable elongated element while the element is bend by winding around a forming component. The element is clamped in a section located forward of the bend to be made. After the bend is made, the front section of the element remains clamped while the back section of the element is released. The backspringing value is determine by means of a sensor which makes a measurement on the back section of the element. The backspringing value is detected during a rotation of the element and the forming component around the axis of the bend by detecting when the back section reaches a predetermined position. This process makes it possible to continue bending of the element after detecting the backspringing value.
Abstract:
A method and related system for operating a computer controlled press brake system to form a requested bend angle in a workpiece are described. According to the disclosed method, values corresponding to geometrical characteristics of the press brake and a first workpiece are stored, as is a value for the requested bend angle. A ram of the press is operated in a first direction, relative to the die, to a first selected position to bend the first workpiece and to hold the first workpiece to a restrained bend angle. The ram is thereafter operated in a second direction to release the first workpiece to an unrestrained bend angle. The difference between the restrained and unrestrained bend agles of the first workpiece is calculated. Using the values for geometrical characteristics and the requested bend angle, a correction factor is calculated. In accordance with the correction factor, the unrestrained and requested bend angles, the ram is set to travel to a corrected position. The ram is operated to the corrected position to bend a second workpiece, substantially identical to the first workpiece, to bend the second workpiece to the requested angle.
Abstract:
An electronic control system for operating the hydraulic cylinders associated with a press brake wherein independent control of each of the hydraulic cylinders is achieved to insure that the cylinders track against a fixed reference to insure more accurate forming of the workpiece. The cylinder tracking is under computer control which also establishes a creep speed slower than the normal forming speed near the point of ram reversal. A plurality of press brake may be operated simultaneously from the same tracking reference.