Abstract:
A combustion system includes a combustion reaction holder that defines plurality of combustion channels and a fluid volume separate from the plurality of combustion channels. The combustion channels are collectively configured to hold a combustion reaction. Heat from the combustion reaction is transferred to a fluid disposed in the fluid volume.
Abstract:
Technologies are presented for applying electrical energy to a combustion reaction to produce agglomerated combustion particulates. For example, a system may include: one or more electrodes configured to apply electrical energy to a combustion reaction; a combustion zone configured to support the combustion reaction of a fuel at a fuel source; and an electrical power source operatively coupled to the one or more electrodes and configured to apply electrical energy to the combustion reaction. The combustion reaction is controlled to produce a distribution of agglomerated combustion particulates characterized by an increase in at least one of an average particulate diameter or an average particulate mass.
Abstract:
A combustion system includes a fuel and oxidant source, a perforated flame holder, and a support structure that supports the perforated flame holder at a selected distance from the fuel and oxidant source. The fuel and oxidant source outputs fuel and oxidant onto the perforated flame holder. The perforated flame holder receives the fuel and oxidant and sustains a combustion reaction of the fuel and oxidant within the perforated flame holder.
Abstract:
According to an embodiment, a combustion system is provided, which includes a nozzle configured to emit a diverging fuel flow, a flame holder positioned in the path of the fuel flow and that includes a plurality of apertures extending therethrough, and a preheat mechanism configured to heat the flame to a temperature exceeding a startup temperature threshold.
Abstract:
Technologies are presented for applying electrical energy to a combustion reaction to produce agglomerated combustion particulates. For example, a system may include: one or more electrodes configured to apply electrical energy to a combustion reaction; a combustion zone configured to support the combustion reaction of a fuel at a fuel source; and an electrical power source operatively coupled to the one or more electrodes and configured to apply electrical energy to the combustion reaction. The combustion reaction is controlled to produce a distribution of agglomerated combustion particulates characterized by an increase in at least one of an average particulate diameter or an average particulate mass.
Abstract:
In a combustion system, a charge source is configured to cooperate with a collection plate and a director conduit to cause at least one particle charge-to-mass classification to be reintroduced to a flame for further reaction.
Abstract:
An apparatus for retrofitting a coal-fueled burner of, e.g., a furnace, with a gas-fueled burner system for enhancing flame radiation of a gas flame. The gas-fueled burner system includes a flame charging system and an electrically isolated electrode. A time-varying voltage is applied to the flame charging system and the flame charging system imparts a corresponding time-varying charge onto the flame. The flame responds to the time-varying charge by increasing its luminosity and emissivity.
Abstract:
Technologies are presented for applying electrical energy to a combustion reaction to produce agglomerated combustion particulates. For example, a system may include: one or more electrodes configured to apply electrical energy to a combustion reaction; a combustion zone configured to support the combustion reaction of a fuel at a fuel source; and an electrical power source operatively coupled to the one or more electrodes and configured to apply electrical energy to the combustion reaction. The combustion reaction is controlled to produce a distribution of agglomerated combustion particulates characterized by an increase in at least one of an average particulate diameter or an average particulate mass.
Abstract:
A combustion fluid flow barrier includes an aperture to control combustion fluid flow. The combustion fluid is charged by a charge generator. The combustion fluid flow barrier includes at least one flow control electrode operatively coupled to the aperture and configured to selectively allow, attract, or resist passage of the charged combustion fluid through the aperture, depending on voltage applied to the flow control electrode.