Abstract:
A light emitting device includes a heterojunction having a p-type layer and an n-type layer. The n-electrode is electrically connected to the n-type layer while the p-electrode is electrically connected to the p-type layer. The p and n-electrodes are positioned to form a region having uniform light intensity.
Abstract:
The invention is a method for designing semiconductor light emitting devices such that the side surfaces (surfaces not parallel to the epitaxial layers) are formed at preferred angles relative to vertical (normal to the plane of the light-emitting active layer) to improve light extraction efficiency and increase total light output efficiency. Device designs are chosen to improve efficiency without resorting to excessive active area-yield loss due to shaping. As such, these designs are suitable for low-cost, high-volume manufacturing of semiconductor light-emitting devices with improved characteristics.
Abstract:
Methods for the fabrication of TS LED chips with improved light extraction and optics, particularly increased top surface emission, and the TS LEDs so fabricated are described. Non-absorbing DBRs within the chip permit the fabrication of the LEDs. The transparent DBRs redirect light away from absorbing regions such as contacts within the chip, increasing the light extraction efficiency of the LED. The non-absorbing DBRs can also redirect light toward the top surface of the chip, improving the amount of top surface emission and the on-axis intensity of the packaged LED. These benefits are accomplished with optically non-absorbing layers, maintaining the advantages of a TS LED, which advantages include .about.6 light escape cones, and improved multiple pass light extraction.