摘要:
A method of fabricating sub-micrometer gates in a semiconductor device is disclosed in which a pre-passivation layer is formed over the gate region during fabrication. This pre-passivation layer protects the gate and underlying gate trough region from surface contamination during device fabrication. Sub-micrometer gate lengths are obtained by use of optical lithography, e.g., angle-shadow metal evaporation techniques and chemical lift-off methods.
摘要:
In one embodiment, a method determines the spectral content of an optical signal. Specifically, the optical signal and an optical local oscillator (LO) signal are provided to inputs of an optical hybrid (e.g., an N×N optical coupler where N is greater than two). The phase-diverse components from the optical hybrid are photodetected allowing for mixing of the optical signal and the optical local oscillator. Bandpass filtering is performed to eliminate or reduce relative intensity noise (RIN). The filtered signals are mixed with an electrical LO signal. A quadrature representation of a phase-diverse heterodyne signal is generated from signals from the mixing. The negative image and the positive image from the quadrature representation are separated. The spectral content of the optical signal is determined from the images.
摘要:
The present invention is an inverted III-nitride light-emitting device (LED) with enhanced total light generating capability. A large area device has an n-electrode that interposes the p-electrode metallization to provide low series resistance. The p-electrode metallization is opaque, highly reflective, and provides excellent current spreading. The p-electrode at the peak emission wavelength of the LED active region absorbs less than 25% of incident light per pass. A submount may be used to provide electrical and thermal connection between the LED die and the package. The submount material may be Si to provide electronic functionality such as voltage-compliance limiting operation. The entire device, including the LED-submount interface, is designed for low thermal resistance to allow for high current density operation. Finally, the device may include a high-refractive-index (n>1.8) superstrate.
摘要:
The invention is a method for designing semiconductor light emitting devices such that the side surfaces (surfaces not parallel to the epitaxial layers) are formed at preferred angles relative to vertical (normal to the plane of the light-emitting active layer) to improve light extraction efficiency and increase total light output efficiency. Device designs are chosen to improve efficiency without resorting to excessive active area-yield loss due to shaping. As such, these designs are suitable for low-cost, high-volume manufacturing of semiconductor light-emitting devices with improved characteristics.
摘要:
A system and method for superheterodyne detection in accordance with the invention. The system comprises a first conversion unit for performing a first heterodyne operation on an optical input signal to generate an electrical IF signal. A second conversion unit is electrically or optically coupled to the first conversion unit. The second conversion unit performs a second heterodyne operation to generate an electrical output signal suitable for signal processing.
摘要:
A receiver and method for using the same to process optical signals is disclosed. The receiver includes an optical coupler and a polarization dependent beam splitter. The optical coupler combines an input signal and a local oscillator signal into a first combined signal. The optical coupler includes a polarization filter that operates on the local oscillator to provide a linearly polarized signal having a predetermined LO polarization direction.
摘要:
A method for designing semiconductor light emitting devices is disclosed wherein the side surfaces (surfaces not parallel to the epitaxial layers) are formed at preferred angles relative to vertical (normal to the plane of the light-emitting active layer) to improve light extraction efficiency and increase total light output efficiency. Device designs are chosen to improve efficiency without resorting to excessive active area-yield loss due to shaping. As such, these designs are suitable for low-cost, high-volume manufacturing of semiconductor light-emitting devices with improved characteristics.
摘要:
The present invention is an inverted III-nitride light-emitting device (LED) with enhanced total light generating capability. A large area device has an n-electrode that interposes the p-electrode metallization to provide low series resistance. The p-electrode metallization is opaque, highly reflective, and provides excellent current spreading. The p-electrode at the peak emission wavelength of the LED active region absorbs less than 25% of incident light per pass. A submount may be used to provide electrical and thermal connection between the LED die and the package. The submount material may be Si to provide electronic functionality such as voltage-compliance limiting operation. The entire device, including the LED-submount interface, is designed for low thermal resistance to allow for high current density operation. Finally, the device may include a high-refractive-index (n>1.8) superstrate.
摘要:
The present invention is an inverted III-nitride light-emitting device (LED) with enhanced total light generating capability. A large area device has an n-electrode that interposes the p-electrode metallization to provide low series resistance. The p-electrode metallization is opaque, highly reflective, and provides excellent current spreading. The p-electrode at the peak emission wavelength of the LED active region absorbs less than 25% of incident light per pass. A submount may be used to provide electrical and thermal connection between the LED die and the package. The submount material may be Si to provide electronic functionality such as voltage-compliance limiting operation. The entire device, including the LED-submount interface, is designed for low thermal resistance to allow for high current density operation. Finally, the device may include a high-refractive-index (n>1.8) superstrate.
摘要:
The invention is a method for designing semiconductor light emitting devices such that the side surfaces (surfaces not parallel to the epitaxial layers) are formed at preferred angles relative to vertical (normal to the plane of the light-emitting active layer) to improve light extraction efficiency and increase total light output efficiency. Device designs are chosen to improve efficiency without resorting to excessive active area-yield loss due to shaping. As such, these designs are suitable for low-cost, high-volume manufacturing of semiconductor light-emitting devices with improved characteristics.