Abstract:
Provided are a method of horizontally growing carbon nanotubes and a carbon nanotube device. The method includes: depositing an aluminum layer on a substrate; forming an insulating layer over the substrate to cover the aluminum layer; patterning the insulating layer and the aluminum layer on the substrate to expose a side of the aluminum layer; forming a plurality of holes in the exposed side of the aluminum layer to a predetermined depth; depositing a catalyst metal layer on the bottoms of the holes; and horizontally growing the carbon nanotubes from the catalyst metal layer. The carbon nanotubes can be grown in directions rather that horizontally relative to the substrate when laid flat.
Abstract:
A single transistor type magnetic random access memory device and a method of operating and manufacturing the same, wherein the single transistor type magnetic random access memory device includes a substrate, first and second doped regions spaced apart from each other, a gate dielectric layer on a portion of the semiconductor substrate between the first and second doped regions, a magnetic tunnel junction on the gate dielectric layer, word lines on the magnetic tunnel junction extending in a first direction which is the same direction as the second doped region, bit lines connected to the first doped region in a second direction perpendicular to the first direction, and an insulating layer covering the gate dielectric layer, the magnetic tunnel junction, and the word lines. The single transistor type magnetic random access memory device has a simple circuit structure, has a prolonged lifetime and is easy to manufacture.
Abstract:
A memory device having one transistor and one resistant element as a storing means and a method for driving the memory device, includes an NPN-type transistor formed on a semiconductor substrate, an interlayer insulating film formed on the semiconductor substrate to cover the transistor in which a contact hole exposing a source region of the transistor is formed, a resistant material in which a bit data “0” or “1” is written connected to the source region of the transistor by a conductive plug or an insulating film, and a conductive plate contacting the resistant material. The memory device exhibits improved degree of integration, reduced current consumption by lengthening a refresh period thereof, and enjoys simplified manufacturing process due to a simple memory cell structure.
Abstract:
A single transistor type magnetic random access memory device and a method of operating and manufacturing the same, wherein the single transistor type magnetic random access memory device includes a substrate, first and second doped regions spaced apart from each other, a gate dielectric layer on a portion of the semiconductor substrate between the first and second doped regions, a magnetic tunnel junction on the gate dielectric layer, word lines on the magnetic tunnel junction extending in a first direction which is the same direction as the second doped region, bit lines connected to the first doped region in a second direction perpendicular to the first direction, and an insulating layer covering the gate dielectric layer, the magnetic tunnel junction, and the word lines. The single transistor type magnetic random access memory device has a simple circuit structure, has a prolonged lifetime and is easy to manufacture.
Abstract:
A memory device including a single transistor having functions of RAM and ROM and methods for operating and manufacturing the same are provided. The memory device includes a single transistor formed on a substrate. The transistor may be a memory transistor having a gate with a nonvolatile memory element, or the nonvolatile memory element is provided between the transistor and the substrate.
Abstract:
A high-density information storage apparatus using electron emission and methods of writing, reading and erasing information using the same are provided. The high-density information storage apparatus includes a lower electrode, a photoconductive layer and a recording medium sequentially provided on the lower electrode, a conductive layer converting unit for making the photoconductive layer conductive, a data write and read unit for writing data to the recording medium or reading data from the recording medium, a data loss preventing unit for preventing loss of data during data write and read operations, and a power supply connected to the lower electrode and the data write and read unit, for supplying voltage necessary for reading and writing data.
Abstract:
A ferroelectric random access memory having a discharge circuit for stably discharging pyroelectric charges generated in a ferroelectric capacitor without affecting write and read operations is provided. In the ferroelectric random access memory having the discharge circuit according to the present invention, the pyroelectric charges between the ferroelectric capacitor and the FET of the memory cell, generated during the write and read operations are automatically discharged through a resistor since the resistor is included as a discharge path between the contact point of the ferroelectric capacitor and the FET of the memory unit cell and the grounding point. Accordingly, the function of turning on and off the discharge path for discharging the pyroelectric charges is not necessary and the polarization turbulence due to the pyroelectric charges is not generated.
Abstract:
Polarization loss in ferroelectric capacitors can be prevented by consecutively applying partial switching pulses to an imprinted ferroelectric capacitor, which is able to achieve a certain polarization state and the zero polarization state simultaneously, under the condition of utilizing the bistable polarization states as memory logic. This effects an improvement in both the fatigue properties and life expectancy of ferroelectric capacitors.