Abstract:
A sputtering system for depositing a thin film on a substrate includes a vacuum chamber, a support for supporting the substrate in the vacuum chamber, a target arranged to oppose the support, a fixed plate formed on a first side of the target, and a plurality of electromagnets formed on the fixed plate in a cell pattern.
Abstract:
A chemical vapor deposition apparatus includes a ground voltage source, a susceptor for placing a substrate, a center pin passing through the susceptor for lifting the substrate, and a ground member for connecting the center pin to the ground voltage source.
Abstract:
A method of winding a coil of a transformer in an inverter of a liquid crystal display including a bobbin wound with a coil and a core introduced into the bobbin, the method includes forming a coil winding part having no protrusion member at the bobbin so as to exclude an interference caused by the protrusion member from a path wound with the coil; and continuously winding the coil from one side of the coil winding part to another side thereof.
Abstract:
An array substrate for a liquid crystal display device includes a substrate, a plurality of gate lines arranged transversely on the substrate, a plurality of data lines disposed orthogonal to the plurality of gate lines, a plurality of thin film transistors formed on the substrate adjacent to intersections of the gate lines and the data lines, each thin film transistor including a gate electrode, a gate insulation layer, an active layer, an ohmic contact layer, a source electrode, and a drain electrode, a plurality of pixel electrodes disposed at pixel regions defined by the intersections of the gate lines and the data lines, each pixel electrode connected to a corresponding one of the drain electrodes, and a metal layer formed on an entire surface of each of the data lines.
Abstract:
A flat luminescent lamp and a method for manufacturing the same are disclosed in the present invention. More specifically, a flat luminescent lamp includes first and second substrates each having a plurality of grooves in sides which the first and second substrates face into each other, first and second electrodes in the grooves, first and second phosphor layers in the first and second substrates including the first and second electrodes, respectively, and a frame for sealing the first and second substrates.
Abstract:
A transmissive display device using a micro light modulator that is capable of improving a light efficiency. In the display device, a plurality of stationary members are provided on the first surface of the first transparent substrate in a line with and at a desired distance from each other in a stripe shape. A plurality of movable members are provided on the first transparent substrate and takes a bridge shape to be spaced from the stationary members and have each side overlapped with the stationary members. A light path controller is formed at each portion corresponding to the movable members on the second transparent substrate in such a manner to be spaced from the adjacent members, to reflect a light passing through a light path between each station member and each movable member such that the light is progressed perpendicularly to the second transparent substrate.
Abstract:
A liquid crystal display (LCD) module includes: a back light unit device having a) a lamp, b) a reflection sheet reflecting light from the lamp, c) a light guide positioned over the reflection sheet, the light guide having grooves at opposing sides, and d) a plurality of sheets located over the light guide, each sheet having a through hole corresponding to the grooves of the light guide; a liquid crystal panel located over the back light unit; a first frame located over the liquid crystal panel; a second frame having a) a main portion under the back light unit, b) first and second wall portion perpendicular to the main portion and disposed on sides of the main portion, and c) supporting portions extending outwardly from upsides of the first and second wall portions and parallel to the main portion, the supporting portion having first fastening means; and a fixing unit having a) pressing portions parallel to the supporting portions of the second frame, the pressing portions pressing down the grooves of the light guide, b) protrusions protruded upward from the pressing portions, the protrusions being inserted into the through holes of the plurality of sheets, and c) a connecting portion parallel to the supporting portion of the second frame, the connecting portion having a second fastening means fastening with the first fastening means of the second frame. Since the second frame is made from metal, heat transfer of the liquid crystal display module is better than in a conventional LCD module.
Abstract:
A flat lamp for emitting light to a surface area of a liquid crystal display device includes a bottom having a channel uniformly crossing an entire surface of the bottom, an arc-discharging gas is disposed within the channel, a cover disposed upon an upper junction surface of the bottom, the cover is coated with a fluorescent material, and an electric field generating means for generating an electric field, wherein the electric field generating means is placed along opposing lateral sides of the channel.
Abstract:
An LCD panel and a method for manufacturing the same facilitate more efficient hardening a UV-type hardening sealant suitable for a large size panel. The LCD panel includes first and second substrates, an active region defined on the first substrate and provided with a plurality of TFT's and pixel electrodes, a sealing region defined along a periphery of the active region, a light-shielding region defined on the second substrate other than on the sealing region, and a liquid crystal region between the first and second substrates. The method for manufacturing an LCD panel includes the steps of preparing first and second substrates, forming a plurality of patterns in an active region on the first substrate, forming a UV hardening type sealant along a periphery of the active region, forming a light-shielding layer on the second substrate so as not to shield the sealant, attaching the first and second substrates to each other, and irradiating the sealant with UV-rays to harden the sealant.
Abstract:
An electrostatic damage preventing apparatus for a thin film transistor array of a liquid crystal display includes a horizontal ground voltage line disposed at a first perimeter portion of the thin film transistor array, a vertical ground voltage line disposed at a second perimeter portion of the thin film transistor array, and a first electrostatic damage-preventing switching device group including parallel connection of at least two electrostatic damage-preventing switching devices to divide and divert an electrostatic voltage applied over the horizontal ground voltage line.