Abstract:
A power converting device includes a main switch, a synchronous rectifier switch, a rectifier-filter circuit which outputs an output voltage, and a synchronous rectifier control circuit which includes a sampling circuit coupled to the rectifier-filter circuit for outputting a voltage variation signal, a differential amplifier circuit that outputs an amplified signal by adding the output voltage and an offset voltage to the voltage variation signal attenuated thereby, and a comparison circuit that compares the amplified signal with the output voltage so as to output a trigger signal, such that the synchronous rectifier switch is turned on when the main switch is turned off, and is turned off prior to conduction of the main switch.
Abstract:
A power distribution device for connection with a plurality of power supply units includes a signal control element, a transmission mechanism including a current transmission unit and a ground transmission unit, and a plurality of electrical connectors respectively adapted for insertion of and connection with the power supply units. Each electrical connector includes a first conductive terminals electrically connected to the signal control element for transmitting an electrical signal to the signal control element, and a plurality of second conductive terminals electrically connected to the current and ground transmission units for transmitting current to the current and ground transmission units.
Abstract:
In a method for document digitization, an apparatus generates a first image of a document sheet by irradiating the document sheet using a first light source and detecting the document sheet irradiated with light from the first light source, which enables detection of ink on the document sheet that defines a marked portion. The apparatus further generates a second image of the document sheet by irradiating the document sheet using a second light source and detecting the document sheet irradiated with light from the second light source, which enables detection of content on the document sheet. The apparatus further obtains a region of the second image that corresponds to the marked portion of the document sheet based on the first image.
Abstract:
An image scanning device includes a bottom wall, a surrounding wall extending upwardly from the bottom wall, a frame connected to the surrounding wall and having a first side plate, and a transparent panel fixed to the frame and having a lateral side supported by an upper part of the first side plate. A contact image sensor module is disposed on the bottom wall transverse to the first side plate, and includes a housing having a first short side wall spaced apart from the first side plate by a first distance less than or equal to 2 mm, and a plurality of sensors, one of which that is closest to the first short side wall is spaced apart from an outer surface of the first short side wall by a second distance less than or equal to 2.5 mm.
Abstract:
First and second positioning devices disposed at first and second stationary locations transmit first and second pilot signals, respectively. Transmission coverages of the first and second pilot signals have an area of overlap. When a mobile robot moves to the area of overlap, the mobile robot determines first angular orientation information between the mobile robot and the first positioning device, and second angular orientation information between the mobile robot and the second positioning device. The mobile robot then determines an initial position of the mobile robot based on the first stationary location, the second stationary location, the first angular orientation information, and the second angular orientation information.
Abstract:
An image scanning apparatus includes a base, a transparent plate, a guide rod disposed between the base and the transparent plate, an optical sensor module, and a carrier mounted on the guide rod and including a first support bracket to place the optical sensor module thereto and having a first pivot connecting portion, a second support bracket having a second pivot connecting portion connected pivotally to the first pivot connecting portion, and an elastic member disposed between the first and second support brackets and biasing upwardly the first support bracket so as to keep the optical sensor module in constant contact with the transparent plate.
Abstract:
A light emitting diode package includes a metallic frame, and an LED chip disposed on the metallic frame. The metallic frame includes first and second metal plates arranged side by side with a space therebetween, and two support arms extending integrally and respectively from two opposite ends of the second metal plate to a level higher than the second top surface and that further extend toward the first metal plate at a level higher than the first top surface crossing the space. The support arms are not in contact with the first metal plate. An encapsulant encapsulates the metallic frame and the LED chip. At least a region of the encapsulant that covers the LED chip is transparent.
Abstract:
A voltage control method for a power converter includes: acquiring a current of a first primary side winding of a transformer circuit of the power converter; integrating the acquired current to obtain an average voltage; comparing the average voltage with a reflected voltage associated with a current of a secondary side winding of the transformer circuit; and adjusting a duty cycle of a switch of the power converter based on an obtained comparison result for adjustment of an output voltage of the power converter.
Abstract:
A power converting device includes a transformer, a first switch coupled to a primary winding of the transformer, a PWM controller which generates a first PWM signal for controlling conduction and non-conduction of the first switch and which generates a control signal that leads the first PWM signal, a rectifier-filter circuit which rectifies an induced voltage generated by a secondary winding of the transformer, a second switch coupled to the secondary winding, and a synchronous rectifier controller which controls conduction and non-conduction of the second switch, and which controls, according to the control signal, the second switch to become non-conductive prior to conduction of the first switch.
Abstract:
A method is for allowing a wireless target device to automatically connect to a target network. The method is to be implemented by a wireless executing device in a wireless network system. In the method, the wireless executing device is configured to establish an ad-hoc wireless network with the wireless target device, and to transmit an access setting to the wireless target device over the ad-hoc wireless network. The access setting enables the wireless target device to connect to the target network automatically.