Abstract:
A touch assembly, a touch screen, and a display panel are provided. The touch assembly includes: a base substrate; and an electrode layer on the base substrate, wherein a plurality of driving electrodes and a plurality of touch sensing electrodes are formed in the electrode layer, and the plurality of touch sensing electrodes are insulated from the plurality of driving electrodes, and wherein at least one of the plurality of driving electrodes matches with at least one of the plurality of touch sensing electrodes to form mutual capacitance.
Abstract:
The present invention provides a touch substrate, a manufacturing method thereof, and a display device. In the touch substrate of the present invention, first leads of a first-layer structure are connected with first patterns in a second-layer structure via first via holes, second leads of the first-layer structure are connected with second patterns in the second-layer structure via second via holes, and the first patterns and the second patterns produce mutual capacitance. Each first pattern comprises a plurality of branches radiating from the center to the circumference, each second pattern surrounds one first pattern in a mutually separated manner, and when the touch substrate is used for flexible display, the second patterns can cover the whole bent surface, so that when a user touches any place of the touch substrate, the touch substrate can quickly respond and blind spots cannot be formed.
Abstract:
A touch display panel, a manufacturing method thereof and a method of detecting a touch for the same are disclosed. The touch display panel includes a first substrate (01) and a second substrate (02). The first substrate (01) includes, within its non-display region, a plurality of gate lines (10) parallel to each other, a plurality of data lines (20) parallel to each other, a plurality of first touch electrode lines (30) parallel to the gate lines (10), and a plurality of second touch electrode lines (40) parallel to the data lines (20). The first substrate (01) further includes first touch electrodes (50) electrically connected to the first touch electrode lines (30) and second touch electrodes (60) electrically connected to the second touch electrode lines (40). Between two adjacent data lines (20), there are two sub-pixels arranged in the same row on the first substrate (01). A second touch electrode line (40) is located between the two sub-pixels. A pair of gate lines (10) are located between any two adjacent rows of sub-pixels on the first substrate (01), and a first touch electrode lines (30) is located between the pair of the gate lines (10). Since the first touch electrode line (30) and the second touch electrode line (40) are disposed within the light-proof non-display region, their impact on the aperture ratio can be avoided.
Abstract:
The present application discloses A thin film transistor (TFT), including: a substrate; a source-drain layer comprising a source electrode and a drain electrode over the substrate; and an active layer comprising a poly-Si pattern and an amorphous-Si pattern having contact with the poly-Si pattern over the substrate. The amorphous-Si pattern is between the poly-Si pattern and the source-drain layer; the source electrode overlaps with the poly-Si pattern and the amorphous-Si pattern respectively in a direction substantially perpendicular to a surface of the substrate; and the drain electrode overlaps with the poly-Si pattern and the amorphous-Si pattern respectively in the direction substantially perpendicular to the surface of the substrate.
Abstract:
An array substrate, a fabricating method thereof and a display device, the fabricating method comprises forming a plurality of touch electrodes on a base substrate, a plurality of touch electrode leads for leading out signals of the touch electrodes and an array structure comprising a plurality of conducting structures. At least part of touch electrode leads and at least one of the conducting structures are disposed in a same layer and made from a same material. The fabricating method can reduce the amount of masks used in the fabricating process of the array substrate.
Abstract:
An array substrate includes a pixel circuit and a light-emitting diode. The pixel circuit includes a driving transistor including a first active medium made of polysilicon, and a switching transistor including a second active medium made of polysilicon. The first active medium has a first grain size. The second active medium has a second grain size larger than the first grain size. The light-emitting diode is coupled to the pixel circuit.
Abstract:
The present application discloses a touch substrate including a base substrate, and a touch electrode layer on the base substrate having a first region having a plurality of first mesh electrode patterns, a second region having a plurality of second mesh electrode patterns corresponding to the plurality of first mesh electrode patterns, and an interface region between the first region and the second region. Each of the plurality of first mesh electrode patterns incudes a plurality of first mesh electrode lines having a first line width. A corresponding second mesh electrode pattern includes a plurality of second mesh electrode lines corresponding to the plurality of first mesh electrode lines and having the first line width. The first mesh electrode line in the interface region has a second line width no less than the first line width.
Abstract:
An etching adhesive tape for manufacturing a touch screen and a manufacturing method thereof, and an etching method are disclosed. The etching adhesive tape includes a base sheet and a functional layer disposed on the base sheet, the functional layer includes a first region corresponding to a region to be etched, and the first region includes an etching paste.
Abstract:
A pixel unit, including: a pixel electrode, a gate electrode, a gate electrode line connected with the gate electrode, a source electrode, a data line connected with the source electrode, a second electrode disposed in a same layer as the pixel electrode, a first drain electrode connected with the pixel electrode, and a second drain electrode connected with the second electrode; the first drain electrode and the second drain electrode and the source electrode are provided with a channel therebetween, and the first drain electrode and the second drain electrode do not contact each other; along a direction of the data line, the edge of the second electrode is parallel with the edge of the pixel electrode and the two do not contact. An array substrate, a pixel driving method and a display device are further disclosed for overcoming the phenomenon of light leakage of the edge of the pixel unit caused by reduction of the width of the black matrix.
Abstract:
The present invention discloses a touch point detection method, device, a touch driving circuit and a touch panel. After determining a to-be-determined touch point among touch detection points of a touch panel, it is determined whether the to-be-determined touch point is influenced by noise of a display driving circuit according to a touch signal, a first noise value and a second noise value of touch detection points in a line where the to-be-determined touch point is located; and after it is determined that the to-be-determined touch point is influenced by the noise of the display driving circuit, it is determined whether the to-be-determined touch point is a touch point according to the second noise value and a preset first threshold value; the second noise value is the noise value of the touch driving circuit when the display driving circuit is turned on. Because it is determined whether the to-be-determined touch point is influenced by the noise of the display driving circuit before determining whether it is a touch point, it is possible to effectively identify interference of noise on the touch signals, improve signal-to-noise ratio of touch signals, and ensure accuracy of touch determining operation.