Abstract:
A device and method for deploying self-cinching surgical clips. The device accesses at least two layers of tissue or material from only one side of the tissue or material and punctures through the two layers of tissue or material. The various configurations of clips disclosed herein are made of a superelastic material such as Nitinol, and have a constrained and a relaxed state, and no sharp edges or tips so as to reduce tissue irritation following deployment. The clip is disposed within the housing of the delivery device and held in a constrained state by a tube assembly until deployment wherein the clip assumes its relaxed state, where the ends of the clip are brought into close approximation, thereby securing the layers of tissue or material together.
Abstract:
A prosthetic heart valve configured to replace a native heart valve and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein is disclosed, together with methods of using same. Interlocking members or flexible loops are included to limit expansion of the valve to one or two valve sizes, for example, with a 2-mm gap between each valve size. The valve may include an internal structural band with overlapped free ends having structure for limiting expansion, or external loops of suture may be added to the fabric covering which limits expansion.
Abstract:
A dynamic, adjustable annuloplasty ring sizer can include an adjustable ring replica, which can be adjusted through a range of sizes corresponding to available prosthetic annuloplasty repair ring sizes. Actuation of an adjustment trigger on a handle portion of the ring sizer can displace tension wires that extend through a malleable shaft and through a plurality of articulating segments that form the ring replica. Displacement of the tension wires causes flexion of the joints between adjacent articulating segments, thereby reducing the overall size of the ring replica. Releasing the tension wires can allow an elastic extension wire to act on the ring replica, enlarging the ring replica to its maximum, at-rest size. In this manner, the appropriate size of annuloplasty ring prosthesis can be determined with a single device, without requiring a plurality of static ring sizers that require individual insertion and placement for the conventional trial-and-error sizing methods.
Abstract:
A valve sizer for determining an appropriate replacement valve size when performing a heart valve replacement procedure is provided. In one version the valve sizer has a hollow shaft with proximal and distal ends. A movable sizing element couples to the distal end of the shaft and is radially expandable between first, contracted and second, expanded positions. An actuator assembly on a handle includes an actuator coupled to a clutch member via a ball-spring-detent clutch. A rod extends through the shaft and maintains a fixed distance between the handle and a distal hub in the sizing element. Movement of the actuator causes axial movement of the shaft, thereby causing radial expansion of sizing petals relative to the hub. The clutch slips when a predetermined reaction force from the surrounding valve annulus is met by the petals.
Abstract:
A dynamic, adjustable annuloplasty ring sizer can include an adjustable ring replica, which can be adjusted through a range of sizes corresponding to available prosthetic annuloplasty repair ring sizes. Actuation of an adjustment trigger on a handle portion of the ring sizer can displace tension wires that extend through a malleable shaft and through a plurality of articulating segments that form the ring replica. Displacement of the tension wires causes flexion of the joints between adjacent articulating segments, thereby reducing the overall size of the ring replica. Releasing the tension wires can allow an elastic extension wire to act on the ring replica, enlarging the ring replica to its maximum, at-rest size. In this manner, the appropriate size of annuloplasty ring prosthesis can be determined with a single device, without requiring a plurality of static ring sizers that require individual insertion and placement for the conventional trial-and-error sizing methods.
Abstract:
A device for anchoring a prosthetic heart valve or annuloplasty ring to a valve annulus in a heart and a method of implanting same is disclosed. The device can include a prosthetic valve or annuloplasty ring with one or more anchors configured to be threaded or otherwise passed underneath a native leaflet and/or subvalvular tissue to secure the device at the native annulus.
Abstract:
Suture locking clamps for securing prostheses such as heart valves or annuloplasty rings with sutures and without knots improve the ease of implantation. The clamps have opposed clamp halves separated by a slot opening to one side and surrounded by a biasing member such as one or more C-clip springs. Sutures pass laterally into the slot which is held open by a retention member positioned between the clamp halves. The locking clamp slides along the sutures into position, the tension of the sutures is adjusted, and the retention member removed to allow the biasing member to clamp the sutures between the clamp halves. A delivery tool used to deliver and deploy the locking clamps contains a number of clamps within a delivery tube in a stack and bonded together for safety and a common retention member. The tool has a longitudinal channel on one side for entry of sutures.
Abstract:
A device and method for deploying self-cinching surgical clips. The device accesses at least two layers of tissue or material from only one side of the tissue or material and punctures through the two layers of tissue or material. The various configurations of clips disclosed herein are made of a superelastic material such as Nitinol, and have a constrained and a relaxed state, and no sharp edges or tips so as to reduce tissue irritation following deployment. The clip is disposed within the housing of the delivery device and held in a constrained state by a tube assembly until deployment wherein the clip assumes its relaxed state, where the ends of the clip are brought into close approximation, thereby securing the layers of tissue or material together.
Abstract:
A device and method for deploying self-cinching surgical clips. The device accesses at least two layers of tissue or material from only one side of the tissue or material and punctures through the two layers of tissue or material. The various configurations of clips disclosed herein are made of a superelastic material such as Nitinol, and have a constrained and a relaxed state, and no sharp edges or tips so as to reduce tissue irritation following deployment. The clip is disposed within the housing of the delivery device and held in a constrained state by a tube assembly until deployment wherein the clip assumes its relaxed state, where the ends of the clip are brought into close approximation, thereby securing the layers of tissue or material together.
Abstract:
A valve sizer for determining an appropriate replacement valve size when performing a heart valve replacement procedure is provided. In one version the valve sizer has a hollow shaft with proximal and distal ends. A movable sizing element couples to the distal end of the shaft and is radially expandable between first, contracted and second, expanded positions. An actuator assembly on a handle includes an actuator coupled to a clutch member via a ball-spring-detent clutch. A rod extends through the shaft and maintains a fixed distance between the handle and a distal hub in the sizing element. Movement of the actuator causes axial movement of the shaft, thereby causing radial expansion of sizing petals relative to the hub. The clutch slips when a predetermined reaction force from the surrounding valve annulus is met by the petals.