Abstract:
To provide a system, a method and the like for acquiring more images or more quickly focused images. A control device acquires information regarding a situation of a range captured by an imaging device, determines a mode according to an assumed situation of the range captured by the imaging device among a plurality of focusing modes, and transmits designation information specifying the determined mode to the imaging device. The imaging device receives the designation information from the control device, and captures an image using the mode specified by the received designation information.
Abstract:
A video decoding device includes a demultiplexer which demultiplexes a video bitstream including video data of an encoded slice, Supplemental-Enhancement-Information having first information indicating a leading picture in gradual refresh, and Supplemental-Enhancement-Information having second information indicating segments where a refresh has completed in a current picture; an extractor which extracts the second information from a message which is part of the demultiplexed Supplemental-Enhancement-Information; and a video decoder which decodes image data from the demultiplexed video bitstream by using at least inter prediction, wherein the video decoder starts decoding based on the leading picture in gradual refresh.
Abstract:
The disclosure is inputting a first image captured an image of an authentication target; inputting a second image captured an image of a right eye or a left eye of the target; determining whether the second image is of a left eye or a right eye of the target based on information including the first image, and outputting a determination result as left/right information in association with the second image; detecting an overlap between a region including the second image and a predetermined region in the first image; calculating a verification score by comparing characteristic information that are related to the left/right information with iris characteristic information calculated from the second image, and calculating a first weighted verification score obtained by weighting the verification score with a detection result; and authenticating a target in the second image based on the first weighted verification score, and outputting an authentication result.
Abstract:
A video decoding device includes a demultiplexing unit which demultiplexes a video bitstream including video data of an encoded slice, first Supplemental-Enhancement-Information having information indicating segments where a refresh has completed in a current picture, and second Supplemental-Enhancement-Information having information indicating a synchronization starting picture and a synchronization completed picture, an extracting unit which extracts the information indicating segments where a refresh has completed in a current picture from a message which is part of the demultiplexed Supplemental-Enhancement-Information; and a video decoding unit which decodes image data from the demultiplexed video bitstream by using at least inter prediction, wherein the synchronization starting picture is a leading picture within a refreshing period, and the synchronization completed picture is the end position of the refreshing period.
Abstract:
A video decoding device includes a demultiplexing unit which demultiplexes a video bitstream including video data of an encoded slice, Supplemental-Enhancement-Information having first information indicating a refresh group of segments in gradual refresh, and Supplemental-Enhancement-Information having second information indicating segments where a refresh has completed in a current picture, an extracting unit which extracts the second information from a message which is part of the demultiplexed Supplemental-Enhancement-Information, and a video decoding unit which decodes image data from the demultiplexed video bitstream by using at least inter picture prediction.
Abstract:
A video encoding device includes: first video encoding means for encoding an input image to generate first coded data; a buffer for storing the input image; coded data transcoding means for transcoding the first coded data generated by the first video encoding means, to generate second coded data; and second video encoding means for generating a prediction signal based on the second coded data supplied from the coded data transcoding means. The first video encoding means includes: dividing means for dividing the input image into a plurality of image areas; and at least one encoding means corresponding to the image areas each of which is made up of a plurality of blocks, and for performing encoding in units of blocks. The encoding means also encodes a block that is included in an image area adjacent with a dividing line in between and is located near the dividing line.
Abstract:
A video encoding device includes: pixel bit length increasing means for increasing a pixel bit length of an input image based on pixel bit length increase information; transform means for transforming output data of the pixel bit length increasing means; entropy encoding means for entropy-encoding output data of the transform means; non-compression encoding means for non-compression-encoding input data; multiplexed data selection means for selecting output data of the entropy encoding means or output data of the non-compression encoding means; and multiplexing means for multiplexing the pixel bit length increase information in a bitstream, wherein a pixel bit length of an image corresponding to the output data of the entropy encoding means and a pixel bit length of an image corresponding to the output data of the non-compression encoding means are different from each other.
Abstract:
Disclosed is an image processing method including: generating an initial denoised image with a reduced noise while preserving an edge in an input image; controlling an iterative operation performed based on energy defined in advance based on an initial residual component calculated from the input image and the initial denoised image; and separating the initial denoised image to a skeleton component and a residual component by the controlled iterative operation to generate the skeleton component as an output image.
Abstract:
A video encoding device uses fractional pixel accuracy motion compensation prediction based on a DCT interpolation filter, and includes: a fractional pixel accuracy motion vector search unit 10 for estimating a fractional pixel accuracy motion vector using an interpolation filter 11 different from a DCT interpolation filter 21; and a fractional pixel accuracy motion compensation prediction signal updating unit 20 for updating a prediction signal of a position of the fractional pixel accuracy motion vector estimated by the fractional pixel accuracy motion vector search unit 10, with a prediction signal based on the DCT interpolation filter 21.
Abstract:
A video encoding device includes: a transformer for transforming an image block; an entropy encoder for entropy-encoding transformed data of the image block transformed by the transformer; a PCM encoder for PCM-encoding an image block; a multiplexed data selector for selecting output data of the entropy encoder or output data of the PCM encoder, for each block of an externally set block size; and a multiplexer for embedding a PCM header into a bitstream, in a block of the externally set block size, wherein the number of successive PCM-encoded blocks is embedded into the PCM header, and PCM data for the number of successive PCM-encoded blocks is multiplexed into the bitstream.