Abstract:
A communication apparatus in the present disclosure comprises an AID generator, a Trigger frame generator, and a wireless transmitter/receiver. When a Trigger Type in a trigger frame is an RA trigger, the AID generator (103) generates, as information for an AID12 subfield, information that is different from an AID. The Trigger frame generator (104) generates a RA variant Trigger frame when the Trigger Type in the trigger frame is an RA trigger, and sets, in the AID12 subfield included in the RA variant Trigger frame, the information output from the AID generator (103). The wireless transmitter/receiver (106) transmits the Trigger frame, generated by the Trigger frame generator (104), to a terminal (200).
Abstract:
Provided is a terminal which can suitably transmit an uplink signal. In a terminal (100), a PC parameter control unit (104) sets a first power control parameter corresponding to a first service, when a prescribed condition relating to a control channel used for transmission of uplink signal allocation is met, and sets a second power control parameter corresponding to a second service, when the prescribed condition is not met. A transmission unit (109) transmits the uplink signal by using transmission power calculated by using the first power control parameter or the second power control parameter.
Abstract:
A wireless station that belongs to a communication cell includes a receiver which, in operation, receives a trigger frame transmitted from an access point that belongs to an interference cell and a controller which, in operation, determines, based on at least one parameter included in the trigger frame and reception power value of the trigger frame received at the wireless station, whether the wireless station is allowed to transmit to other wireless station that belongs to the communication cell, wherein the at least one parameter includes a value set based on transmit power value of the trigger frame transmitted from the access point.
Abstract:
A terminal (transmission apparatus) is disclosed, which is capable of appropriately configuring processing of a Post-IFFT section in accordance with a communication environment in signal waveform generation. In the terminal, an IFFT section performs IFFT processing on a transmission signal; a control section determines a signal waveform configuration for the transmission signal after the IFFT processing in accordance with a communication environment of the terminal; and the Post-IFFT section performs Post-IFFT processing on the transmission signal after the IFFT processing based on the determined signal waveform configuration.
Abstract:
A self-contained operation using a time-unit configuration taking into consideration HARQ processes is performed. In base station, transmission section transmits a downlink signal in a downlink transmission region in a time unit composed of the downlink transmission region, an uplink transmission region, and a gap interval that is a switching point from the downlink transmission region to the uplink transmission region; and reception section receives an uplink signal in the uplink transmission region in the time unit. Each time unit includes the downlink transmission region and the uplink transmission region for each of HARQ processes.
Abstract:
The present invention adopts a configuration such that when cooperative reception by a plurality of base stations is not applied, a reference signal sequence determined from a selection baseline value corresponding to the number of a sequence group allocated to a cell belonging to the device in question is selected from among a plurality of selection baseline values as a reference signal sequence for non-cooperative reception, whereas when cooperative reception by a plurality of base stations is applied, a reference signal sequence determined from one or more intermediate selection baseline values set between two adjacent selection baseline values corresponding to the number of a sequence group allocated individually to a terminal device is selected among the plurality of selection baseline values as a reference signal sequence for cooperative reception differing from the reference signal sequence for non-cooperative reception.
Abstract:
A radio receiver apparatus that can effectively utilize GI to improve the reception quality. In this apparatus, a data extracting part extracts a data portion of a direct wave from a signal subjected to a radio reception process by a received RF part. A GI extracting part extracts, from the signal subjected to the radio reception process by the received RF part, GI having a length determined by an extracted GI length deciding part. The extracted GI is adjusted by a data position adjusting part such that its rear end coincides with the read end of the extracted data portion. A combining part combines the extracted data portion with the GI the data position of which has been adjusted. The combined signal is then supplied to a frequency axis equalizing part, which equalizes the signal distortions of the combined signal on the frequency axis.
Abstract:
It is possible to provide a radio communication terminal device and a radio transmission method which can improve reception performance of a CQI and a reference signal. A phase table storage unit stores a phase table which correlates the amount of cyclic shift to complex coefficients {w1, w2} to be multiplied on the reference signal. A complex coefficient multiplication unit reads out a complex coefficient corresponding to the amount of cyclic shift indicated by resource allocation information, from the phase table storage unit and multiplies the read-out complex coefficient on the reference signal so as to change the phase relationship between the reference signals in a slot.
Abstract:
Provided are a wireless communication apparatus and a reference signal generating method, wherein inter-cell interference is reduced inside and outside a CoMP set. A CoMP mode setting unit (101) sets whether the terminal (100) thereof is a CoMP terminal or a Non-CoMP terminal. When the terminal (100) is set as a Non-CoMP terminal, the hopping pattern calculating unit (104) calculates a ZC sequence number to be used as the transmission timing, from among all the ZC sequence numbers that can be used within the system. When the terminal (100) is set as a CoMP terminal, the hopping pattern calculating unit (104) calculates a ZC sequence number to be used as the transmission timing, by hopping the ZC sequence numbers to be used within the CoMP set. A ZC sequence generating unit (105) generates a ZC sequence to be used as an SRS, using the calculated ZC sequence number.
Abstract:
A sequence allocating method and apparatus wherein in a system where a plurality of different Zadoff-Chu sequences or GCL sequences are allocated to a single cell, the arithmetic amount and circuit scale of a correlating circuit at a receiving end can be reduced. In ST201, a counter (a) and a number (p) of current sequence allocations are initialized, and in ST202, it is determined whether the number (p) of current sequence allocations is coincident with a number (K) of allocations to one cell. In ST203, it is determined whether the number (K) of allocations to the one cell is odd or even. If K is even, in ST204-ST206, sequence numbers (r=a and r=N−a), which are not currently allocated, are combined and then allocated. If K is odd, in ST207-ST212, for sequences that cannot be paired, one of sequence numbers (r=a and r=N−a), which are not currently allocated, is allocated.