Abstract:
Techniques are described for wireless communication. A first method includes measuring, by a first device, a condition of a wireless channel; and generating at least one channel side information feedback message based on the measured condition of the wireless channel. The at least one channel side information feedback message provides information on a relationship of a set of parameters, including a data rate parameter, an error probability parameter, and at least one of a deadline parameter or a transmission link parameter. A second method includes measuring, by a first device, interference on a wireless channel; identifying an interfering device for the wireless channel based on the measurement; and generating a channel side information feedback message based on the measured interference on the wireless channel. The channel side information feedback message indicates the interfering device for the wireless channel and a correlation of interference from the interfering device with time or frequency.
Abstract:
Techniques are described for wireless communication. A first method includes measuring, by a first device, a condition of a wireless channel; and generating at least one channel side information feedback message based on the measured condition of the wireless channel. The at least one channel side information feedback message provides information on a relationship of a set of parameters, including a data rate parameter, an error probability parameter, and at least one of a deadline parameter or a transmission link parameter. A second method includes measuring, by a first device, interference on a wireless channel; identifying an interfering device for the wireless channel based on the measurement; and generating a channel side information feedback message based on the measured interference on the wireless channel. The channel side information feedback message indicates the interfering device for the wireless channel and a correlation of interference from the interfering device with time or frequency.
Abstract:
Methods, apparatus, and computer software are disclosed for communicating within a wireless communication network including a scheduling entity configured for full duplex communication, and user equipment (UE) configured for half duplex communication. In some examples, one or more UEs may be configured for limited (quasi-) full duplex communication. Some aspects relate to scheduling the UEs, including determining whether co-scheduling of the UEs to share a time-frequency resource is suitable based on one or more factors such as an inter-device path loss.
Abstract:
Apparatuses and methods for performing asynchronous multicarrier communications are provided. One such method involves generating, at a first wireless device, a waveform including one or more carriers, shaping the waveform to reduce interference between the waveform and adjacent waveforms, and transmitting, on a spectrum, the shaped waveform asynchronously.
Abstract:
Aspects of the present disclosure provide for the pairing of two or more inter-band time division duplex (TDD) carriers. In some examples disclosed herein, a conjugate or inverse carrier may be used such that full duplex, or a close approximation thereto, is achieved. With the introduction of a paired channel and fast control channels, rapid uplink/downlink switching may be achieved for TDD carriers efficiently and effectively. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Aspects of the present disclosure provide for the pairing of an inter-band carrier with a time division duplex (TDD) carrier. If the paired band is a frequency division duplex (FDD) band, then base stations and mobile devices may transmit and receive additional thin control channels on FDD carriers to enable full duplex operations. If the paired band is a TDD band, then a conjugate or inverse carrier may be used such that full duplex, or a close approximation thereto, is achieved. With the introduction of a paired channel and fast control channels, rapid uplink/downlink switching may be achieved for TDD carriers efficiently and effectively. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Techniques are described for wireless communication. One method includes monitoring, by a first base station of a first operator, for clear channel assessment (CCA) exempt transmission (CET) timing information of a second base station of a second operator; identifying transmission timings of CETs of the second base station of the second operator based at least in part on the monitoring; and discontinuing transmissions of the first base station of the first operator during the transmission timings of the CETs of the second base station of the second operator. Transmissions of the second base station of the second operator may be asynchronous to transmissions of the first base station of the first operator.
Abstract:
Soft buffer management is disclosed in which a base station determines a first number of component carriers (CCs) monitored by a user equipment (UE) and determines a second number of CCs for partitioning a soft buffer for storing one or more unsuccessfully decoded data packets, wherein the second number is different than the first number. Various aspects provide for determination of the second number of CCs using clear channel assessment (CCA) clearance information with regard to unlicensed CCs used in the communication system.
Abstract:
Design of channel usage beacon signals (CUBS) in cooperative networks is disclosed. After detecting a clear channel assessment (CCA), a transmitter selects a configuration of a CUBS associated with the transmitter based on the CCA opportunity assigned to the network. The configuration of the CUBS associated with the transmitter may include a set of frequency subcarriers for CUBS transmissions. The transmitter transmits the CUBS according to transmission characteristics based on the CCA opportunity. In additional aspects, randomization may be introduced into the frequency subcarrier allocations of CUBS configurations where the transmitter receives assignment of virtual frequency subcarriers for CUBS transmissions and maps the virtual subcarrier to physical frequency subcarriers for CUBS transmission. Additional aspects allow for pattern offset values to be determined independently from the transmitter cell identifier. In such aspects, the assigned pattern offsets may be cell identifier-independent, while others may be cell identifier-dependent.
Abstract:
Methods, apparatuses, systems, and devices are described for wireless communication. In one method, a control format indicator value for a frame may be received over a physical carrier in a shared spectrum. Based on the control format indicator value, a number of subframes of the frame to be used by a base station for downlink transmissions over the physical carrier may be determined. The control format indicator value may indicate an end of transmission, if data is to be transmitted during the frame, a number of subframes to be used for transmission, or whether the current subframe is the final subframe used for transmission. In some cases, a user equipment (UE) may use the control format indicator value to determine a sleep schedule. Further, ACK/NACK transmissions by a UE may be scheduled based on the control format indicator value.