Abstract:
A data transmission method of a User Equipment, UE, in a Long Term Evolution, LTE, compliant mobile communications network, and a corresponding UE. The method comprises detecting reconfiguration of a bearer from a split bearer in which uplink Packet Data Convergence Protocol, PDCP, Protocol Data Units, PDUs, are transmitted to both a Master eNB, MeNB, and to a Secondary eNB, SeNB, to a non-split bearer in which uplink PDCP PDUs are transmitted only to the MeNB. If reconfiguration of a bearer from a split bearer to a non-split bearer in which uplink PDCP PDUs are transmitted to the MeNB is detected, the method further comprises initiating retransmission of PDCP PDUs from the first PDCP PDU for which transmission was attempted via the SeNB and for which there has been no confirmation of successful delivery by a protocol layer below the PDCP layer within the UE. The method further comprises retransmitting only PDCP PDUs for which transmission of the PDU was attempted via the SeNB.
Abstract:
Provided is a method for reporting a buffer state by a user equipment accessing a first eNB and a second eNB in a communication system, the method comprising the steps of: triggering a buffer state report for new data when the new data is generated; selecting at least one eNB to which the buffer state report is to be transmitted, on the basis of the amount of uplink data to be transmitted; transmitting the buffer state report for the new data to the selected at least one eNB; receiving, from at least one eNB among the first eNB and the second eNB, a resource allocated by the at least one eNB as a response to the buffer state report; and transmitting the new data using the allocated resource.
Abstract:
The present disclosure relates to a communication technique for converging a 5G communication system, which is provided to support a higher data transmission rate beyond a 4G system with an IoT technology, and a system therefor. The present disclosure may be applied to intelligent services (e.g., smart home, smart building, smart city, smart car or connected car, health care, digital education, retail business, security and safety related service, or the like) based on the 5G communication technology and the IoT related technology. The present disclosure discloses a method and an apparatus for supporting a multiple access in next generation mobile communication systems.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A communication method and apparatus in a wireless communication system is provided. The communication method of a terminal in a wireless communication system includes: connecting to a cellular network via a base station; receiving a control message comprising measurement-related information associated with a wireless local area network (WLAN) from the base station; and measuring the WLAN based on the measurement-related information.
Abstract:
Methods and apparatus are provided in which a configuration message to configure at least one uplink carrier is received. A power headroom report (PHR) is triggered for a first uplink carrier if a predetermined event occurs. An allocation of an uplink transmission resource is detected for the PHR. It is identified whether the first uplink carrier for which a power headroom (PH) is to be determined is different from a second carrier to which the uplink transmission resource is allocated. The PH is determined based on a first pathloss associated with the first uplink carrier, if the first uplink carrier is different from the second carrier. The PHR generated based the determined PH is transmitted.
Abstract:
The present invention relates to a method and a device for machine type communication in a wireless communication system, and according to one embodiment of the present invention, a method for receiving a paging message in a wireless communication system for supporting MTC comprises the steps of: determining whether there is a terminal within a normal coverage (NC) or an extended coverage (EC), transmitting, to a network, state information including EC function support information and/or area display information of the NC or the EC according to the determination result; determining a paging receiving time according to an operation mode related to the state information, and receiving the paging message according to the determined paging receiving time.
Abstract:
The present specification relates to a communication method and apparatus. The communication method for a base station (P-ENB) that controls a primary cell (PCell) of user equipment (UE) according to one embodiment of the present specification comprises the steps of: receiving a packet from a serving gateway through a non-primary (NP)-evolved packet system (EPS) bearer for a serving cell of a non-P-ENB base station (NP-ENB); generating a first radio link control packet data unit (RLC PDU) using the received packet; and transmitting the generated first RLC PDU to the NP-ENB.
Abstract:
The present invention relates to a method and apparatus for activating carriers in a mobile communication system, and includes determining, when an instruction message for aggregating multiple carriers is received, a bit position per carrier according to an identifier per carrier in the instruction message; checking, when a carrier state message including a state bitmap indicating state per carrier, the state per carrier according to the bit position per carrier in the state bitmap; and activating/deactivating the carriers according to the per-carrier states. According to the present invention, it is possible to minimize signaling overhead caused by carrier activation and deactivation.
Abstract:
A method and apparatus for controlling measuring the frequency of a new cell within a forbidden registration area when a User Equipment (UE) enters into the new cell in a mobile communication system are provided. If the UE recognizes the new registration area as forbidden, the UE does not measure the frequency of the current cell for a predetermined reference time, and searches for a suitable cell for a normal service by measuring other frequencies. If no suitable cell in the other frequencies is found, the UE removes a measuring limitation and searches for an acceptable cell for a limited service by measuring frequencies including frequency of the current cell.
Abstract:
A method and apparatus for initiating communications on a shared channel in a mobile communication system are provided. A user equipment transmits an uplink signal for requesting communications on the shared channel to a Node B, and waits for a delay duration without monitoring a downlink after transmitting the uplink signal. When the delay duration has elapsed, the user equipment monitors the downlink during a valid period and determines whether a downlink signal responding to the uplink signal is received in a transmission time interval within the valid period. When the downlink signal is received in the valid period, the user equipment transmits and receives data on the shared channel.