Abstract:
An electronic feeler gauge (110) comprises a sensor blade (112), a transmitting system (120), and a receiving system (124). The sensor blade (112) comprises transmission induction coils (114), reception induction coils (116), and measurement sites (118), spaced in two dimensions about the sensor blade (112). Each of the measurement sites (118) is associated with at least one of the transmission induction coils (114) and at least one of the reception induction coils (116). The transmitting system (120) is configured to drive direct electrical current (128) across the transmission induction coils (114) to produce transmitted probe signals (122) from the transmission induction coils (114). The receiving system (124) is configured to receive response signals (126) from the reception induction coils (116) due to the transmitted probe signals (122).
Abstract:
A system for nondestructive evaluation of a test object includes a platform, an electromagnetic acoustic transducer (EMAT) to create acoustic vibrations that travel along the test object; an infrared detector positioned to record thermal images of a plurality of test areas on the test object to detect flaws in the test object as the platform and the test object move relative to each other; and a control connected to actuate the EMAT and the infrared detector, synchronize the creation of vibrations with the recording of thermal images, receive a signal from the infrared detector indicative of the thermal image of the surface of the test object, and record locations of the flaws appearing on the thermal images of the test areas, all as the platform and the test object move relative to each other.
Abstract:
A system and method for the detection of foreign object debris materials or defects on and/or under a surface of a composite part under manufacture. A member, for example an inspection gantry, is configured to move over the surface. A thermal excitation source is fixed to the member and is configured to direct infrared radiation across the surface. An infrared camera is also fixed to the member a predetermined distance away from the thermal excitation source and is configured to scan the surface as the member moves over the surface to detect and output scan information of the surface. A controller is coupled to the excitation source and to the infrared camera. The controller is configured to process the scan information from the infrared camera to identify a foreign object debris material or defect located on and/or under the surface.
Abstract:
A method and apparatus for inspecting a structure. Electromagnetic radiation is sent to a surface on a structure from an electromagnetic radiation emission system. A response is filtered to the electromagnetic radiation using a filter located inside of a borescope inspection housing. The filter is configured to pass a number of wavelengths in a response to the electromagnetic radiation directed at the surface on the structure. Data is generated from the number of wavelengths from the number of wavelengths passed through the filter using a sensor array. A two-dimensional image of the surface on the structure is generated with a group of graphical indicators indicating a group of inconsistencies not visible to a naked eye. The two-dimensional image is generated using data from a sensor array.
Abstract:
Described herein is an apparatus for non-destructive testing that includes a cavity. The apparatus also includes an input element coupled with the cavity and configured to receive a laser beam and to direct the laser beam into the cavity. The apparatus additionally includes multiple output elements formed in the cavity and spaced apart along the cavity. Each output element of the multiple output elements is configured to direct a portion of the laser beam out of the cavity such that each portion of the laser beam directed out of a respective one of the multiple output elements has a substantially similar intensity.
Abstract:
In one aspect, systems for detecting a fuel leak are described herein. In some implementations, a system for detecting a fuel leak described herein comprises a fuel-containing vessel having an exterior surface and a carbon nanotube coating layer comprising photoluminescent carbon nanotubes disposed on at least a portion of the exterior surface of the fuel-containing vessel. The system further comprises a fuel-sensitive coating layer substantially covering the carbon nanotube coating layer. The fuel-sensitive coating layer is optically opaque or substantially opaque to wavelengths of light absorbed and/or emitted by the photoluminescent carbon nanotubes.
Abstract:
Chopped fiber composite systems and methods are disclosed. Sorting systems include a conveyor, an imager, a plurality of receptacles, a pneumatic device, and controller. Molding systems include a conveyor, an imager, a mold, a pneumatic device, and a controller. The controller directs the pneumatic device to alter the freefall of chopped fiber composite pieces based on characteristics of the chopped fiber composite pieces as they drop from the conveyor and into a receptacle or a mold. Sorting and molding methods include dropping chopped fiber composite pieces, detecting characteristics of the dropping pieces, and directing the pieces based on the detected characteristics.
Abstract:
A system for quantifying x-ray backscatter system performance may include a support; a plurality of rods mounted on the support; the rods of the plurality of rods arranged parallel to each other, having generally curved outer surfaces, and being arranged in groups of varying widths, each group of the groups having at least two of the rods of a same width; and a user interface configured to be connected to receive a backscatter signal from an x-ray backscatter detector associated with an x-ray tube, apply a transfer function to generate a transfer curve representing x-ray backscatter for each rod of the plurality of rods from x-rays transmitted by the x-ray tube.
Abstract:
In one aspect, systems for detecting a fuel leak are described herein. In some implementations, a system for detecting a fuel leak described herein comprises a fuel-containing vessel having an exterior surface and a carbon nanotube coating layer comprising photoluminescent carbon nanotubes disposed on at least a portion of the exterior surface of the fuel-containing vessel. The system further comprises a fuel-sensitive coating layer substantially covering the carbon nanotube coating layer. The fuel-sensitive coating layer is optically opaque or substantially opaque to wavelengths of light absorbed and/or emitted by the photoluminescent carbon nanotubes.
Abstract:
A method of detecting high-temperature exposure of a composite may include applying a composition comprising an adduct suitable for detecting heat and/or mechanical stress in a composite, wherein the adduct reverts to first and second adduct components after exposure of the composition to a temperature of from about 190° C. to about 260° C. to a surface of the composite; exposing the surface to which the composition has been applied to ultraviolet light; and measuring fluorescence of the composition.