Abstract:
Methods and apparatuses for estimating and reducing interference in wireless communication systems are disclosed. As one example, a method for reducing interference in a wireless communication system is disclosed. The method includes the steps of generating a tile for transmission, the tile including a first portion and a second portion, inserting small message information into the first portion or the second portion, if the small message information is inserted into the first portion, inserting data into the second portion, and if the small message information is inserted into the second portion, inserting the data into the first portion.
Abstract:
A method, apparatus, and system to transmit signals using multiple antennas with per-antenna power constraints. The method includes initializing a precoding algorithm to a complex matrix. The precoding algorithm is for precoding signals transmitted by a plurality of antennas. The method includes iteratively processing the precoding algorithm on a per-antenna basis by, at each iteration, sequentially updating a precoder for each of the plurality of antennas. The method includes, after each iteration, determining whether the precoding algorithm has converged based on a change in a rate of mutual information across iterations. Additionally, the method includes, in response to determining that the precoding algorithm has converged, transmitting the signals using the precoding algorithm.
Abstract:
A method for a base station to support network entry of a mobile station in a communication system is provided. The method includes transmitting to the mobile station each of a plurality of transmitted network entry signals over a preferred downlink beam corresponding to the transmitted network entry signal. Each of a plurality of received network entry signals is received from the mobile station over a preferred uplink beam corresponding to the received network entry signal. Each of the transmitted network entry signals comprises the preferred uplink beam corresponding to a subsequently received network entry signal, and each of the received network entry signals comprises the preferred downlink beam corresponding to a subsequently transmitted network entry signal.
Abstract:
A base station transmits a plurality of primary synchronization channel (PSC) symbols to a mobile station in a slot of a subframe of a frame-based wireless communication system. The base station also transmits a plurality of secondary synchronization channel (SSC) symbols to the mobile station in the slot of the subframe. The mobile station determines a preferred receiver beam based on the plurality of received consecutive PSC symbols.
Abstract:
A method and apparatus are provided for allocating code resources to ACK/NACK channel indexes, when UEs need ACK/NACK transmission in a wireless communication system in which a predetermined number of orthogonal cover Walsh codes is selected from among available orthogonal cover Walsh codes, at least one subset is formed, having the selected orthogonal cover Walsh codes arranged in an ascending order of cross interference, subsets are selected for use in first and second slots of a subframe, and the orthogonal cover Walsh codes of the subset selected for each slot and ZC sequence cyclic shift values are allocated to the ACK/NACK channel indexes.
Abstract:
A method constructs a family of low-density-parity-check (LDPC) codes. The method includes identifying a code rate for an LDPC code in the family, identifying a protograph for the LDPC code, and constructing a base matrix for the LDPC code. The base matrix is constructed by replacing each zero in the protograph with a ‘−1’, selecting a corresponding value for an absolute shift for each one in the protograph based on constraining a number of relative shifts per column of the LDPC code to one and increasing a size of a smallest cycle in a graph of the LDPC code, and replacing each one in the protograph with the corresponding value.
Abstract:
A method and a circuit for generating cyclic redundancy checks. The method calculates a plurality of cyclic redundancy checks for a transport block with a plurality of information bits. At least one cyclic redundancy check among the plurality of cyclic redundancy checks is calculated based on a subset of information bits, and at least one information bit among the plurality of information bits is not within said subset of the information bits. In addition, a transport block cyclic redundancy check may be calculated based on all the information bits.
Abstract:
A system and method for inter-cell interference avoidance. A base station is configured to perform interference avoidance. The base station receives feedback information from either a second base station or a subscriber station served by the second base station. The base station selects a codebook vectors or matrices for transmission to subscriber stations based, at least in part, on a portion of the feedback information. The base station is further configured to select which subscriber stations will participate in interference avoidance calculations.
Abstract:
For use in a wireless communication network, a mobile station configured to determine a preamble sequence from a set of indexed preamble sequences by generating an index of the preamble sequence from a B-bit message is provided. The mobile station is configured to group the B bits of the message into n groups, each group having a substantially equal number of bits. The mobile station is also configured to generate a parity bit from each of the n groups. The mobile station is further configured to determine the index of the preamble sequence based on the n parity bits. The mobile station is still further configured to transmit the preamble sequence corresponding to the index of the preamble sequence. A base station configured to recover the B-bit message using the received signal from the mobile station is also provided.
Abstract:
A mapping scheme between a plurality of control channel element sets and a plurality of acknowledgement channel resource sets is established. Each of the control channel element sets includes at least one control channel element, and each of the acknowledgement channel resource sets includes at least one acknowledgement channel resource. In accordance with a scheduling grant transmitted using a control channel element set selected from the plurality of control channel element sets, a data packet is transmitted via a second node to a first node. Then, an acknowledgement channel message is transmitted via the first node to the second node by using at least one acknowledgement channel resource selected from the acknowledgement channel resource set that correspond to the control channel element set used for transmitting the scheduling grant in accordance with the mapping scheme. The acknowledgement channel message may be one of a positive acknowledgement message and a negative acknowledgement message.