Abstract:
The invention relates to a method for controlled braking of an electrically powered lifting action in the event of a failure, such that at least one of the nominal values for “rotational direction” and/or “operating speed” and/or “door position” and/or “motor capacity” and/or “motor current” is ascertained and compared with an actual value, and such that a motorized braking process or motorized stopping process is triggered by a departure of the actual value from the nominal value that lies outside a predetermined range. In addition the invention relates to a device for applying said method.
Abstract:
The present invention provides an open/close member control apparatus capable of blocking entry of a ruffian even if forced closing operation is cancelled during closing operation of an open/close member by the forced closing operation and suppressing damage on an object which is erroneously caught. In the open/close member control apparatus for switching closing operation of a window to opening operation in the case where pinch of a foreign matter is detected and the forced closing operation of the switch is not maintained and continuing the closing operation of the window in the case where pinch of a foreign matter is detected and the forced closing operation of the switch is maintained, in the case where pinch is detected and the forced closing operation of the switch is maintained, when the maintenance of the forced closing operation is cancelled during closing operation of the window, the window opening operation is performed so that an open amount of the window becomes smaller than that in normal times.
Abstract:
There is provided a sliding door opening and closing device that improves layout flexibility of a driving unit in a self-propelled sliding door opening and closing device in which the driving unit is disposed on a sliding door side and that can protect a cable member without adding a component such as a decorative sheet. A lower rail is fixed to the vehicle body, and a lower arm guided along the lower rail is fixed to the sliding door. A driving unit for driving the sliding door for opening and closing has a drum driven by an electric motor for rotation. A cable is wound around the drum, wherein one end of the cable is fixed to the vehicle body on a vehicle-front side of the lower rail and the other end thereof is fixed to the vehicle body on a vehicle-rear side of the lower rail. This driving unit is incorporated inside the lower arm so as to be integrally formed with the lower arm.
Abstract:
A window regulator is provided for operating a window pane of an automotive vehicle including a guide rail extending between opposite upper and lower ends. A lifter plate is slidably coupled to the guide rail. The lifter plate includes an integrated drum housing and is adapted for supporting the window pane. A motor assembly is fixedly secured to the lifter plate and includes a drive housing and a reversible motor. A drive shaft is rotatably coupled to the drive housing for rotation by the reversible motor. A cable drum is disposed in the integrated drum housing of the lifter plate for being rotatably driven by the drive shaft. A pair of cables having first ends connected to the cable drum are at least partially wound around the cable drum in opposite directions while second ends are connected to the upper and lower ends of the guide rail. The lifter plate, cable drum and motor assembly move together upwardly and downwardly along the guide rail in response to rotation of the shaft.
Abstract:
A noise dampener for a garage door opener includes a pair of resilient members, each resilient member of the pair of resilient members having first and second opposite ends. The first ends are adapted for mounting to a garage ceiling mounting bracket. The second ends are adapted for mounting to motor mounts mounted to an upper side of a motor housing of the garage door opener. The first and second ends of the resilient members are mountable to the ceiling mounting bracket and the motor mounts respectively by fastening means through apertures in the first and second ends. A vibration dampening pad is provided for mounting between the garage wall adjacent the garage door and a chain channel support extending from the motor housing.
Abstract:
A door actuating system has a fractional horsepower motor mounted on the door adjacent its free edge, driving a clutch connected to a duplex capstan pulley that is wrapped by two tensioned flexible static lines, for opening/closing movement ‘along the line’. The motor also drives a gear that engages a rack projecting from the door frame, to displace the door relative to its frame. Rotation of the gear is read by a rotary encoder, which feeds a microprocessor, to continuously monitor the location, speed and direction of motion of the door, for both the ‘on’ and the ‘off’ condition of the electric motor. A latching clip over-rides action of the original door latch.
Abstract:
A system for moving a barrier between limit positions, includes an operator motor assembly mounted proximate to the barrier, wherein at least a portion of the motor assembly is movable between an operating position and a locking position with the motor assembly blocking movement of the barrier. A bias assembly biases the motor assembly in the operating position and allows the motor assembly to move toward the locking position when either a predetermined force overcomes a biasing force or when the barrier is moved to a closed limit position or when forced entry is imposed on the barrier. The biasing force may be adjusted by moving posts on the motor assembly that are engaged by the bias assembly. A disengagement feature may also be provided that allows pivotable movement of the motor assembly even when in a locking position. And the pivoting motor assembly may be used as a secondary entrapment input to an operator controller.
Abstract:
A braking magnet is attached to the housing of a motor of a motorized component such as a window covering. With this structure the motor is braked from turning under the weight of the window covering when deenergized.
Abstract:
A window regulator device includes a rail having at least one projecting lug, a plate having at least one lug, a drive cable, and a cable drum placed in a recess of the plate. The plate is fixed to the rail by a joint action of a tensioned drive cable and the mutual imbrication of the lugs of the plate and the rail. The assembly of the window regulator device is simplified, and the drum can be fixed independently of the mounting and removal of an actuation motor.
Abstract:
An electrical motor includes a sleeve, a rotational assembly located in the sleeve, and a shaft rotatably mounted about an axis extending longitudinally through the sleeve. The motor also includes an endcap, and a brake mechanism located about the axis of the shaft, the brake mechanism including a spring and a first bushing, wherein the spring forces the first bushing against the endcap to create a static frictional torque between the first bushing and the endcap when the motor is in an off state.