Abstract:
A method includes generating with a processor (122) a three-dimensional subject specific model of structure of interest of a subject to be scanned based on a general three-dimensional model and pre-scan image data acquired by an imaging system (100) generating with the processor (122) an imaging plan for the subject based on the three-dimensional subject specific model.
Abstract:
A method for generating or reconstruction of three-dimensional (3D) images corresponding to a structure of interest (60) including: acquiring a plurality of image projections corresponding to a structure of interest (60); applying a shape model (66) at a selected 3D seed point (64); and adapting the shape model (66) to represent the structure of interest (60), yielding an adapted shape model. A system for generation and reconstruction of three-dimensional (3D) images. The system (10) includes: an imaging system (12) configured to provide projection data corresponding to a structure of interest (60); and a controller (50) in operable communication with the imaging system (50). The controller (50) is configured to: receive the projection data, (64); apply a shape model (66) at a selected 3D seed point (64); and adapt the shape model (66) to represent the structure of interest (60), thereby yielding an adapted shape model.
Abstract:
The present invention refers to an angiographic image acquisition system and method which can beneficially be used in the scope of minimally invasive image-guided interventions. In particular, the present invention relates to a system and method for graphically visualizing a pre-interventionally virtual 3D representation of a patient's coronary artery tree's vessel segments in a region of interest of a patient's cardiovascular system to be three-dimensionally reconstructed. Optionally, this 3D representation can then be fused with an intraoperatively acquired fluoroscopic 2D live image of an interventional tool. According to the present invention, said method comprises the steps of subjecting the image data set of the 3D representation associated with the precalculated optimal viewing angle to a 3D segmentation algorithm (S4) in order to find the contours of a target structure or lesion to be examined and interventionally treated within a region of interest and automatically adjusting (S5) a collimator wedge position and/or aperture of a shutter mechanism used for collimating an X-ray beam emitted by an X-ray source of a C-arm-based 3D rotational angiography device or rotational gantry-based CT imaging system to which the patient is exposed during an image-guided radiographic examination procedure based on data obtained as a result of said segmentation which indicate the contour and size of said target structure or lesion. The aim is to reduce the region of interest to a field of view that covers said target structure or lesion together with a user-definable portion of the surrounding vasculature.
Abstract:
The invention proposes a 3D reconstruction of a body and a body contour from transversally truncated projections using a polyhedral object model. Possible clinical applications arise in the field of guided biopsies on acquisition systems equipped with a flat panel detector, where truncated projections cannot be avoided in thorax and abdominal scan protocols. From, for example, a rotational run both a 3D volume reconstruction and a surface mesh reconstruction of a patient's shape is generated and then visualized simultaneously in order to help the physician guide the biopsy device and judge the distance from the patient's skin to the tissue of interest inside the reconstructed volume.
Abstract:
A method and an apparatus for acquiring 3-dimensional images of coronary vessels (11), particularly of coronary veins, is proposed. 2-dimensional X-ray images (13) are acquired within a same phase of a cardiac motion. Then, a 3-dimensional centerline model (15) is generated based on these 2-dimensional images. From 2-dimensional projections of the centerline model into respective projection planes, the local diameters (w) of the vessels in the projection plane can be derived. Having the diameters, a 3-dimensional hull model of the vessel system can be generated and, optionally, 4-dimensional information about the vessel movement can be derived.
Abstract:
The present invention relates to thermoplastic vulcanizates (TPVs) based on low Mooney, optionally hydrogenated nitrile butadiene rubber and polyamides. The present invention also relates to TPVs based on low Mooney, optionally, hydrogenated nitrile terpolymers and polyamides. TPVs prepared according to the present invention have improved morphology, smaller rubber particle size, and improved processability compared to TPVs containing non-low Mooney, optionally hydrogenated nitrile butadiene rubber.
Abstract:
The analysis of a stenosis of a coronary vessel in three dimensions requires a motion compensated reconstruction. According to an exemplary embodiment of the present invention, an examination apparatus for local motion compensated reconstruction data set is provided, wherein the local motion compensated reconstruction vectors relating to a start point and an end point of the stenosis.
Abstract:
A method for four dimensional reconstruction of regions exhibiting multiple phases of periodic motion includes the operation of building one or more 3-D reconstructions using a set of 2-D projections. The method further includes the operation of deriving one or more 3-D model segments from each of the one or more 3-D reconstructions, wherein a plurality of 3-D model segments are formed thereby, and wherein each of the one or more 3-D model segments is derived from a single one of the one or more 3-D model segments. The plurality of derived 3-D model segments forms a 4-D reconstruction of the region of interest.
Abstract:
An adaptive roadmapping device and method for examination of an object include providing pre-navigation image data representing part of the object being a vascular structure including an element of interest and having a tree-like structure with a plurality of sub-trees; generating a vessel representation based on the pre-navigation image data; acquiring live image data of the object; determining spatial relation of the pre-navigation image data and the live image data; analyzing the live image data by identifying and localizing the element in the live image data; determining a sub-tree in which the element is positioned, where the determining is based on the localization of the element and on the spatial relation; selecting a portion of the vascular structure based on the determined sub-tree; generating a combination of the live image data and an image of the selected portion of the vascular structure; and displaying the combination as a tailored roadmap.
Abstract:
The invention relates to a method for controlled braking of an electrically powered lifting action in the event of a failure, such that at least one of the nominal values for “rotational direction” and/or “operating speed” and/or “door position” and/or “motor capacity” and/or “motor current” is ascertained and compared with an actual value, and such that a motorized braking process or motorized stopping process is triggered by a departure of the actual value from the nominal value that lies outside a predetermined range. In addition the invention relates to a device for applying said method.