Abstract:
Apparatus for carrying out chromatography, preferably liquid process chromatography, in particular for industrial applications, using in each case at least one positive displacement pump, provided with a drive, for feeding product and eluent (mobile phase) onto at least one separation column, wherein the drive of each positive displacement pump is a highly dynamic drive, which is equipped with an integrated transducer system for capturing the distance/time date, which are convertible into corresponding position-regulated travel commands using connected superordinate movement control/regulation.
Abstract:
A method and system for pumping unit with an elastic rod system is applied to maximize fluid production. The maximum stroke of the pump and the shortest cycle time are calculated based on all static and dynamic properties of downhole and surface components without a limitation to angular speed of the prime mover. Limitations of structural and fatigue strength are incorporated into the optimization calculation to ensure safe operation while maximizing pumped volume and minimizing energy consumption. Calculated optimal prime mover speed is applied to the sucker rod pump by means of beam pumping, long stroke or hydraulic pumping unit by controlling velocity, acceleration and torque of the electric prime mover or by controlling pressure and flow rate in hydraulically actuated sucker rod pumping system.
Abstract:
A control unit for a linear compressor comprises a current sensor for detecting the current consumption of the linear compressor, a deflection sensor for detecting the deflection of the linear compressor and a control circuit for controlling the movement and detecting an overload state of the linear compressor using the current consumption which is detected by the current sensor and the deflection which is detected by the deflection sensor.
Abstract:
Hermetically encapsulated refrigerant compressor (1), comprising a cylinder housing (3), which is used as the basis for manufacturing various refrigerant compressor construction series each having different working volumes and a piston (6) guided in a piston bore (8) of the cylinder housing (3) along a defined piston run surface (9). According to the invention, it is provided that a free run section (10) is situated in the piston bore (8) as a function of the particular working volume to be implemented inside the cylinder housing (3), which working volume is fixable by a variation of the position of the piston (6) or the piston run surface (9) in the piston bore (8), so that the piston run surface (9) is reduced to a minimal guide length measured in the direction of the cylinder axis (12), at which the piston (6) is only lowered in its bottom dead center position far enough into the area of the piston bore (8) corresponding to the piston run surface (9) so that the piston (6) is just prevented from falling out of the piston bore (8) and a sealing action of the piston (6) in relation to the piston run surface (9) is provided.
Abstract:
An apparatus for controlling a compressor includes a stroke calculator for calculating a stroke estimate value of a compressor based on a value of a current applied to a motor of the compressor and a value of a voltage applied to the motor of the compressor; an operation frequency reference determining unit for integrating the stroke estimate value to output an integrated stroke value, detecting a mechanical resonance frequency of the compressor based on the integrated stroke estimate value and the current value, and determining the detected mechanical resonance frequency as an operation frequency reference value; and a controller for varying a current operation frequency of the compressor according to the determined operation frequency reference value.
Abstract:
An apparatus and method for controlling an operation of a linear compressor by detecting a phase difference inflection point at a time point when a phase difference between a current and a stroke is placed within a certain region, and by recognizing the phase difference infection point as a top dead center (TDC)=O. The apparatus for controlling an operation of a linear compressor, comprises: a controlling unit for detecting a phase difference between a current and a stroke, and outputting a frequency varying signal or a phase difference inflection point detecting signal based on the detected phase difference; a phase difference inflection point detecting unit for judging whether to detect a phase difference inflection point or not by the phase difference inflection point detecting signal, and outputting a stroke command value controlling signal based on a result of the judgement; and a stroke command value determining unit for determining a stroke command value based on the stroke command value controlling signal.
Abstract:
Rotational force from a driving device 11 is transmitted to an eccentric cam 32 through a rotating rod 31, and the eccentric cam 32 causes a piston 22 and a piston rod 25 to move up and down in a reciprocating manner by its rotation. Atmospheric air is inspired into a first chamber R1 in a cylinder 21 upon the descent of the piston 22. Upon the rise of the piston 22, the air in the first chamber R1 is compressed, and the compressed high-pressure air is discharged to an accumulator 12 through a discharge valve 25. The accumulator communicates with a second chamber R2 in the cylinder 21. When the air pressure in the accumulator 12 increases, this high-pressure air pushes the piston 22 to cancel the contact between the piston rod 26 and the eccentric cam 32, whereby the power transmission from a power transmission device 30 to a pressure conversion mechanism 20 is cut off.
Abstract:
An apparatus and method are disclosed to control an operation of a reciprocating compressor capable of precisely controlling an operation (stroke) of a reciprocating compressor regardless of a parameter of an internal motor of the reciprocating compressor and a mechanical error of the reciprocating compressor. The apparatus for controlling an operation of a reciprocating compressor which determines a stroke estimate value corresponding to a point when a discharge valve of the reciprocating compressor is opened as a stroke reference value, and controls a voltage applied to the reciprocating compressor according to the determined stroke reference value.
Abstract:
Disclosed are an apparatus for controlling a driving of a reciprocating compressor capable of enhancing an efficiency by differently controlling a frequency and a stroke voltage according to a load size and capable of reducing consumption power, and a method thereof. The apparatus comprises a controlling unit for judging a load size by comparing a phase difference between a detected current and a stroke with a reference phase difference, and outputting a frequency control signal and a stroke control signal according to the judged load size.
Abstract:
An apparatus for controlling an operation of a reciprocating compressor includes a voltage detecting unit for detecting a positive half-wave voltage of an AC voltage applied to a motor of the reciprocating compressor; a current detecting unit for detecting a positive half-wave current of the AC current passing through the motor; a voltage and current estimating unit for estimating a negative half-wave voltage of the AC voltage applied to the motor and a negative half-wave current of the AC current passing through the motor based on the detected positive half-wave voltage and the detected positive half-wave current; a stroke estimating unit for estimating a stroke of the reciprocating compressor based on the detected positive half-wave voltage and the detected positive half-wave current and the negative half-wave voltage and the negative half-wave current which have been estimated by the voltage and the current estimating unit; a stroke controller for outputting a stroke control signal of the reciprocating compressor based on a comparison value between the estimate stroke estimate value and a stroke reference value of the reciprocating compressor; and a power source unit for applying positive DC power to the voltage detecting unit and the current detecting unit.