Abstract:
The present invention includes a system and method for telecommunications field engineering and includes a mobile software application which assists the user in processing telecommunications installation tasks. The present invention will allow the user to receive assigned tasks, complete those tasks using tools within the application, and to store and/or transmit the results of those tasks.
Abstract:
A mobile communication device for access procedure enhancement is provided. In the mobile communication device, a wireless module performs wireless transmissions and receptions to and from a service network. Also, a controller module transmits an access probe to the service network via the wireless module, and retransmits the access probe in response to not receiving an acknowledgement of the access probe from the service network via the wireless module in a waiting period of time. The waiting period of time is determined according to a coherence-time related offset. The controller module further repeats the retransmission of the access probe until the acknowledgement of the access probe is received from the service network via the wireless module.
Abstract:
Osteosynthesis constructs for treating bone fractures and bone screws for use in such systems are disclosed. The bone screws include a threaded front section configured for engagement with cortical bone, a threaded mid-section and an unthreaded neck section configured for limited movement within the near cortex of the bone. Osteosynthesis constructs of the type disclosed promote secondary healing by allowing for substantially parallel motion at the near and far cortex within the effective motion range for callus formation.
Abstract:
A multiphoton microscope is provided. The microscope includes: an excitation source for providing an optical excitation beam at an excitation wavelength λ; a scanner for scanning the excitation beam on a sample; an objective for irradiating the sample with the excitation beam scanned by the scanner and for collecting an emission beam from the sample; a first detector for detecting a plurality of multiphoton signals; and an emission light path allowing transmission from the objective to the first detector a wavelength band limited to greater than or equal to λ/2 and less than λ, wherein the plurality of multiphoton signals have wavelengths within the wavelength band; wherein the plurality of multiphoton signals comprises a first multiphoton signal and a second multiphoton signal of different types. Fast image capture rate multiphoton microscopes for in vivo imaging, as well as photothermolysis methods using the microscopes are also provided.
Abstract:
A system for allocating PRACH (Physical Random Access Channel) resources is provided in the invention. The system comprises a plurality of wireless terminals and a base station. The base station is configured to allow the plurality of wireless terminals to share an access slot comprising a plurality of M2M (Machine to Machine) preambles and a plurality of H2H (Human to Human) preambles, and configured to separate the plurality of M2M preambles from the plurality of H2H preambles.
Abstract:
An amperometric oxygen sensor for sensing the partial pressure of oxygen is disclosed. The amperometric oxygen sensor having a multilayered body which comprises a plurality of oxygen ion conductor layers interposed between a plurality of oxygen-porous electrode layers. Oxygen from a sample gas enters porous cathode layer of the sensor, through the ion conductor diffuses to anode because of a potential difference, and then an amperometric current is measured, which is proportional to the partial pressure of the oxygen. The amperometric oxygen sensor further comprises a heating member embedded within the sensor body and a heating controller electrically connects with the heating member to heat and maintain the sensor at working temperature, about 500˜800° C. An electrical insulator layer, but not thermal insulator, is blocked between the heating member and the oxygen-porous electrode strips so as to prevent the amperometric current from electromagnetic field interference.
Abstract:
A mobile communications device with a wireless module and a controller module for performing an enhanced access procedure is provided. The wireless module performs wireless transmissions and receptions to and from a cellular station of a service network. The controller module transmits a random access preamble to the cellular station via the wireless module, receives a random access response message corresponding to the random access preamble from the cellular station via the wireless module, and transmits a scheduled transmission message including the MTC (machine type communication) data from the cellular station via the wireless module, in response to the random access response message. Then, the controller module completes the enhanced access procedure in response to receiving a contention resolution message from the cellular station via the wireless module.
Abstract:
In one embodiment, a method comprises detecting, by a router, a first router advertisement message from an attachment router that provides an attachment link used by the router, the first router advertisement message specifying a first IPv6 address prefix owned by the attachment router and usable for address autoconfiguration on the attachment link. The router detects an unsolicited delegated IPv6 address prefix from the attachment router and that is available for use by the router. The router claims a second IPv6 address prefix from at least a portion of the delegated IPv6 address prefix, for use on at least one ingress link of the router.
Abstract:
A mobile communication device for access procedure enhancement is provided. In the mobile communication device, a wireless module performs wireless transmissions and receptions to and from a service network. Also, a controller module transmits an access probe to the service network via the wireless module, and retransmits the access probe in response to not receiving an acknowledgement of the access probe from the service network via the wireless module in a waiting period of time. The waiting period of time is determined according to a coherence-time related offset. The controller module further repeats the retransmission of the access probe until the acknowledgement of the access probe is received from the service network via the wireless module
Abstract:
A mobile communication device for load balancing management is provided. In the mobile communication device, a wireless module receives data communication services via a first service node and receives a plurality of system information messages from the first service node and a plurality of second service nodes, wherein each of the system information messages has a forward-link quality threshold corresponding to a respective service node. Also, a controller determines a traffic type of the data communication services and a signal indicator of the first service node, and determines whether the signal indicator is less than the forward-link quality threshold corresponding to the first service node. In response to that the signal indicator is less than the forward-link quality threshold corresponding to the first service node, the controller switches the data communication services from the first service node to one of the second service nodes according to the traffic type.