Abstract:
In a phase change random access memory (PRAM) device, data is programmed in selected memory cells using a plurality of program loops. In each program loop, division program operations for cell groups including the selected memory cells are performed in consecutive timeslots.
Abstract:
The invention relates to an acrylic impact modifier having a core-shell structure that provides an acrylic impact modifier composition comprising (a) a rubber core containing an alkyl acrylate polymer comprising at least two layers having different cross-linking densities, and (b) a shell containing an alkyl methacrylate polymer; to a process for the preparation of the acrylic impact modifier; and to a poly(vinyl chloride) composition comprising it. The acrylic impact modifier imparting excellent impact resistance was invented by employing multi-stage polymerization and at the same time by controlling the swelling index of rubber particles by changing the degree of cross-linking from stage to stage. And the poly(vinyl chloride) comprising the impact modifier of the present invention has good weatherability as well as excellent impact strength.
Abstract:
The present invention relates to an acrylic impact modifier having a multilayered structure, which offers both superior impact resistance and coloring characteristics to engineering plastics, such as polycarbonate (PC) and a polycarbonate/polybutylene terephthalate alloy resin, or to a polyvinyl chloride resin. The present invention provides an acrylic impact modifier having a multilayered structure comprising: a) a seed prepared by emulsion copolymerization of a vinylic monomer and a hydrophilic monomer; b) a rubbery core surrounding the seed and comprising a C2 to C8 alkyl acrylate polymer, and c) a shell surrounding the rubbery core and comprising a C1, to C4 alkyl methacrylate polymer, a method for preparing the same, and a thermoplastic resin comprising the same.
Abstract:
A package map data outputting circuit of a semiconductor memory device embedded with a test circuit and a method for the same. In order to improve the reliability of package map data and easily output a greater amount of package map data, package map data is stored to package map data registers at the wafer level and then output through the test circuit at the package level.
Abstract:
The invention relates to a package map data outputting circuit of a semiconductor memory device embedded with a test circuit and a method for the same. In order to improve the reliability of package map data and easily output a greater amount of package map data, package map data is stored to package map data registers at the wafer level and then output through the test circuit at the package level.
Abstract:
A circuit includes a clock buffer to generate an initial reference clock signal responsive to an external clock signal, a DMC to receive the initial reference clock signal, and an array of forward units to receive a signal from the DMC. The circuit also includes an array of back units that produces a back signal. The back signal is input in a clock driver to produce an internal clock signal. A delay element produces a delayed reference signal responsive to the initial reference clock signal. A plurality of MCCs receive an output of one of the forward units and the delayed reference clock signal. When one of the outputs of the forward units is synchronized with the delayed reference clock signal, one of the back units is thereby activated, which initiates generation of the back signal.
Abstract:
A generic wafer includes memory units separated by scribe lanes. Memory chips of different storage capacities can be produced from different numbers of memory units on the generic wafer by forming one or more interconnect layer specialized according to a desired storage capacity and cutting the wafer using a sawing pattern according to the desired storage capacity. The specialized layer can be formed using different masks sets that form a different conductive pattern for each storage capacity or forming a generic interconnect structure with fuses that are cut to select the storage capacity of the memory chips
Abstract:
An input receiver capable of sensing and amplifying an external signal having a very small swing input signal. The input receiver comprises a clock sampled amplifier for receiving a clock signal and a reference signal, respectively, in response to a first state of a clock signal and a delayed sampling clock signal, and for amplifying and sampling the voltage difference between the external signal and the reference signal, respectively, in response to a transition of the clock and delayed sampling clock signals to a second state; and a pulse generator for pre-charging a power source voltage and selectively pulling down the pre-charged signals to produce a pulse signal, in response to the second state of the delayed sampling clock signal and outputs of the clock sampled amplifier.
Abstract:
A semiconductor memory device for providing data together with an echo clock as an indicating signal representing a time for providing or presenting data in an electronic system is described. The device comprises an echo data latch circuit for generating a source signal of the echo clock in response to an output of a sense amplifier for sensing and amplifying the data of a memory cell during a read operation, and for producing the source signal of the echo clock in response to a predetermined level of power voltage during a write operation; and an output circuit, connected between the echo data latch circuit and an echo clock output terminal, for receiving the source signal of the echo clock and for outputting the echo clock to the output terminal in response to control data relating to an external clock, thereby minimizing or reducing clock skew and also preventing speed push.
Abstract:
The invention relates to an impedance control output circuit of a semiconductor device and a method relevant thereto to prevent or minimize various problems caused by a transmission error by automatically resetting the impedance mismatch resulting from variances of supply voltage, temperature, other operational conditions. The impedance control output circuit of the semiconductor device comprises: an impedance detection, comparison and adjustment part for performing a normal operation and an automatic reset operation by comparing array reference voltage with pad voltage of a pad connected to an external resistance to obtain the pad voltage tracking the array reference voltage and by comparing the array reference voltage with the reference voltage predetermined by a resistant voltage divider for resetting the level of the array reference voltage to obtain the array reference voltage tracking the constant reference voltage; and a driving and data outputting part for driving impedance of a data output terminal of the semiconductor device in response to results of the normal and automatic reset operation to thereby output the internal data.