Abstract:
A supporting mechanism for supporting an electronic device, the electronic device includes a first sidewall and at least one second sidewall. The supporting mechanism comprises a rotating tray and a supporting bracket. The rotating tray is rotatably coupled to the electronic device, and the supporting bracket is pivotably coupled to and foldable on the rotating tray. When the rotating tray is rotated with the supporting bracket perpendicular to the first sidewall, the supporting bracket is unfolded and cooperates with the first sidewall to support the electronic device in the first direction. When the rotating tray is rotated with the supporting bracket perpendicular to the at least one second sidewall, the supporting bracket is unfolded and cooperates with the at least one second sidewall to support the electronic device in a second direction different from the first direction. An electronic device is also provided.
Abstract:
A liquid crystal display (LCD) is provided. The LCD includes a display panel and a voltage supply device (VSD). The display panel includes a plurality of scan lines, a plurality of data lines disposed substantially perpendicularly with the scan lines, and a plurality of pixels. The pixels are respectively electrically connected with the corresponding data line and the corresponding scan line, and are arranged in an array. Each of the pixels includes a common line and a compensation line, wherein the common line is located in the transparent area to receive a common voltage, and the compensation line is located in the reflection area to receive a stable voltage. The VSD is coupled to the compensation line of each of the pixels for continuously and correspondingly providing the stable voltage to the compensation line of each of the pixels.
Abstract:
A circuit for powering a light source includes a filter, a transformer, and a controller. The filter receives an input voltage and filters the input voltage to provide a regulated voltage. The transformer converts the regulated voltage to an output voltage to power the light source. The controller generates a driving signal to alternately operate the switch between a first state and a second state. The controller corrects a power factor of the circuit by controlling time durations of the first state and the second state, such that an input current decreases to a predetermined level during the second state and increases from the predetermined level to a peak level proportional to the input voltage during the first state. The controller controls the ratio of time in the first state to time in the second state to adjust an output current flowing through the light source to a target level.
Abstract:
In one embodiment, a driving circuit includes an AC/DC converter which converts an AC voltage to a DC voltage and a DC/DC linear regulator which regulates a current through, e.g., an LED light source, according to a first current reference if a monitoring signal indicating the DC voltage is within a predetermined range, and regulates the current according to a second current reference less than the first current reference if the monitoring signal is beyond the predetermined range. In another embodiment, a controller controlling power to an LED light source turns on a first plurality of LEDs and turns off a second plurality of LEDs if a monitoring signal indicative of a DC voltage received by the LED light source is within a predetermined range, and turns on both first and second plurality of LEDs if the monitoring signal is beyond the predetermined range.
Abstract:
A backlight controller for driving multiple light emitting diode (LED) strings includes feedback circuitry, phase array circuitry, and encoder circuitry. The feedback circuitry generates multiple feedback signals indicative of currents flowing through the LED strings respectively. The encoder circuitry generates a code signal indicative of a total number of operative LED strings among the multiple LED strings based on the feedback signals. The phase array circuitry generates multiple saw tooth signals according to the code signal. A phase shift amount between two adjacent signals of the saw tooth signals is determined by the total number of the operative LED strings. The phase array circuitry compares each of the saw tooth signals with a dimming control signal to generate multiple phase shift signals so as to respectively control the operative LED strings.
Abstract:
A circuit for driving a light source includes a voltage converter, a switch and a controller. The voltage converter converts an AC input voltage signal to a first rectified AC voltage signal. The voltage converter further generates an average signal proportional to an average voltage level of the first rectified AC voltage signal. The switch is coupled to the light source in series. The controller coupled to the voltage converter and the switch compares the first rectified AC voltage signal with the average signal to generate a pulse signal. The controller further generates a dimming control signal based on the pulse signal to control the switch thereby controlling dimming of the light source.
Abstract:
A keystone jack based on a punch down type keystone jack architecture, having a wire layout cover attached to the rear side of the jack body and two cover shells pivotally connected to the jack body for closing/opening the wire layout cover. The IDC housing at the back side of the jack body has a wire-bonding block panel formed of multiple partition plates and a retaining hook located on the distal end of each partition plate to minimize the gap between each two adjacent partition plates, allowing installation of the core wires of the inserted network cable by a punch down type technique or a tool free type technique.
Abstract:
A protective casing includes a main body and a bracket. The main body defines two sliding grooves. The bracket for supporting the main body includes two support legs, one end of the two support legs pivots on the other, and the other ends of each support leg is capable of being slid in the two sliding grooves respectively so that an angle is formed between the two support legs.
Abstract:
A collimation system for a medical apparatus includes a collimation component having a laser emitting device, at least one photographing device, and a computing device. The laser emitting device is configured to the emit a laser beam to irradiate on a landmark on a body surface of a patient, the at least one photographing device is configured to take a photograph of a laser irradiation spot, and the computing device is configured to obtain a position of the laser irradiation spot by performing computation on images obtained by the at least one photographing device. The system further includes a moving component provided on the medical apparatus and configured to move to a target position for performing diagnosis or treatment. The medical apparatus automatically is configured to locate the moving component based on the position of the irradiation spot obtained from the computation.
Abstract:
A driving circuit for powering a light-emitting diode (LED) light source includes a converter circuit, an energy storage element and a switch element. The converter circuit provides a first output voltage on a first power line to provide power to the LED light source and provides a second output voltage on a second power line that is less than the first output voltage. The energy storage element is charged and discharged to regulate a current through the LED light source. The switch element operates in a first state during which the energy storage element is charged and operates in a second state during which the energy storage element is discharged. The converter circuit provides the second output voltage to maintain an operating voltage across the switch element less than the first output voltage during both the first state and the second state.