Abstract:
A machine-implemented system and method are described for removing interference between adjacent distributed-input-distributed-output (DIDO) clusters comprising. For example, a method according to one embodiment comprises: detecting signal strength at a first client from a main DIDO cluster; detecting interference signal strength at the first client from an interfering DIDO cluster; if the signal strength from the main DIDO cluster reaches a specified value relative to the value of the interference signal strength from the interfering DIDO cluster, then generating channel state information (CSI) defining channel state between one or more antennas of the first client and one or more antennas of the interfering DIDO cluster; transmitting the CSI from the first client to a base transceiver station (BTS) in the interfering DIDO cluster; and implementing DIDO precoding with inter-DIDO-cluster interference (IDCI) cancellation at the BTS in the interfering DIDO cluster to avoid RF interference at the first client.
Abstract:
A system for compensating for in-phase and quadrature (I/Q) imbalances for multiple antenna systems (MAS) with multi-user (MU) transmissions (defined with the acronym MU-MAS), such as distributed-input distributed-output (DIDO) communication systems, comprising multicarrier modulation, such as orthogonal frequency division multiplexing (OFDM). For example, one embodiment of the system comprises one or more coding modulation units to encode and modulate information bits for each of a plurality of wireless client devices to produce encoded and modulated information bits; one or more mapping units to map the encoded and modulated information bits to complex symbols; and a MU-MAS or DIDO IQ-aware precoding unit to exploit channel state information obtained through feedback from the wireless client devices to compute MU-MAS or DIDO IQ-aware precoding weights, the MU-MAS or DIDO IQ-aware precoding unit precoding the complex symbols obtained from the mapping units using the weights to pre-cancel interference due to I/Q gain and phase imbalances and/or inter-user interference.
Abstract:
A method of operation for wireless transmission of data to one or more destination devices across a network that includes a plurality of access points disposed about a building, each access point having a first transmission range of maximum bandwidth and a second transmission range of signal interference, the access points being arranged in a topology wherein each access point is spaced-apart from a nearest neighboring access point by a first distance less than the first transmission range. The data is transmitted by a first access point; then it is repeated by a series of additional access points that extends across the topology. Re-transmission of the data occurs in a manner wherein any pair of access points transmitting on the same channel is separated by a distance greater than the second transmission range. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
A system and method are described for performing motion capture on stop-motion animated characters. For example, a method according to one embodiment of the invention comprises: embedding phosphor within a moldable material; forming one or more stop-motion objects from the moldable material to create a first phosphor pattern; exposing the moldable material to a light source; removing the light source; and capturing the first phosphor pattern with a first set of one or more cameras.
Abstract:
An apparatus is described comprising a Power-over-Ethernet interface, a High-Definition Media Interface (HDMI), a Bluetooth interface, a means for decompressing low-latency streaming interactive video and audio from an Internet-based hosting service and outputting the decompressed audio and video through HDMI, and a means for transmitting to the Internet-based hosting service user control information and statistics from received packets. Further, the apparatus is able to receive two interleaved streams of low-latency streaming interactive video.
Abstract:
A system and method are described below for encoding interactive low-latency video using interframe coding. For example, one embodiment of a computer-implemented method for performing video compression comprises: detecting a maximum data rate of a communication channel between a server and a client; transmitting a video stream comprising a series of sequential frames from the server to the client; detecting that the maximum data rate will be exceeded if a particular frame of the sequence of frames is transmitted from the server to the client over the communication channel; and in lieu of transmitting the frame which could cause the maximum data rate to be exceeded, causing the client to re-render the previous frame of the sequence of frames, thereby effectively reducing the frame rate of the video stream rendered on the client.
Abstract:
A system and method are described below for encoding interactive low-latency video using interframe coding. For example, one embodiment of a computer-implemented method for performing video compression comprises: logically subdividing each of a sequence of images into a plurality of tiles, each of the tiles having a defined position within each of the sequence of images, the defined position remaining the same between successive images; detecting motion within the sequence of images occurring at each of the positions of each of the tiles; and encoding each tile within each image of the sequence of images using a first compression format or a second compression format, wherein the frequency at which a particular tile is encoded according to the first compression format across the sequence of images is based on the detected amount of motion at the position of that tile across the sequence of images.
Abstract:
An apparatus is described comprising: a decode unit which receives an encoded interlaced video signal including encoded interframe motion compensation data, and responsively transmits a decoded interlaced video signal and associated interframe motion compensation data; and a de-interlace unit which converts the interlaced video signal to a progressive video signal, and which, responsive to the interframe motion compensation data, selects a region of the interlaced video signal for a different type of conversion, the selection based on the change in position of the region between successive video frames.
Abstract:
A system for processing multimedia channels is described comprising: transmitting decryption keys for decrypting the multimedia channels, the keys encrypted in both a first encryption format and a second encryption format; the keys encrypted in the first encryption format being decryptable by a first type of multimedia receiver; and the keys encrypted in the second encryption format being decryptable by a second type of multimedia receiver.
Abstract:
A server center for hosting low-latency streaming interactive audio/video (A/V) includes a plurality of servers that run one or more applications and an inbound routing network that receives packet streams from users via a first network interface and routes the packets to one or more of the servers. The packet streams include user control input. One or more of the servers are operable to compute A/V data responsive to the user control input. A compression unit is coupled to receive the A/V data from the one or more of the servers and output compressed A/V data therefrom. An output routing network that routes the compressed A/V data to each of the users over a corresponding communication channel via a second interface, the compression unit is operable to modify a compression rate responsive to current characteristics of the corresponding communication channel for each user so as to optimize performance of the one or more applications.