Abstract:
The system disclosed and claimed herein is an electric propelling wheel and battery/motor control subsystem enabling the retrofitting of a standard skateboard, having standard truck and wheels, with electrical propulsion capabilities.
Abstract:
An embodiment includes a system, comprising: a device configured to present a logical device and enable a virtual device in response to a control signal; and a processor coupled to the device and configured to: present the logical device through a first device interface; transmit the control signal to the device to enable the virtual device; and after the virtual device is enabled, present the virtual device through a second device interface.
Abstract:
The system and method invention herein disclosed and claimed is a folding skateboard. It can be folded while at rest, on the ground, by applying pressure to one end as the bi-folding deck portions pivot toward one another and come to rest in a fully folded position.
Abstract:
A semiconductor structure has a first layer that includes a first semiconductor material and a second layer that includes a second semiconductor material. The first semiconductor material is selectively etchable over the second semiconductor material using a first etching process. The first layer is disposed over the second layer. A recess is disposed at least in the first layer. Also described is a method of forming a semiconductor structure that includes a recess. The method includes etching a region in a first layer using a first etching process. The first layer includes a first semiconductor material. The first etching process stops at a second layer beneath the first layer. The second layer includes a second semiconductor material.
Abstract:
A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.
Abstract:
A method identifies electric load types of a plurality of different electric loads. The method includes providing a load feature database of a plurality of different electric load types, each of the different electric load types including a first load feature vector having at least four different load features; sensing a voltage signal and a current signal for each of the different electric loads; determining a second load feature vector comprising at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the different electric loads; and identifying by a processor one of the different electric load types by determining a minimum distance of the second load feature vector to the first load feature vector of the different electric load types of the load feature database.
Abstract:
An apparatus includes a substrate and a magnetic layer coupled to the substrate. The magnetic layer includes an alloy that has magnetic hardness that is a function of the degree of chemical ordering of the alloy. The degree of chemical ordering of the alloy in a first portion of the magnetic layer is greater than the degree of chemical ordering of the alloy in a second portion of the magnetic layer, and the first portion of the magnetic layer is closer to the substrate than the second portion of the magnetic layer.
Abstract:
A heterojunction for use in a transistor structure is provided. The heterojunction includes a barrier layer positioned beneath a gate region of the transistor structure. The barrier layer includes nitride-based semiconductor materials. A channel layer provides electrical conduction An intermediate layer near the barrier layer and including nitride-based semiconductor materials having a wider bandgap than the channel layer.
Abstract:
A dual-gate normally-off nitride transistor that includes a first gate structure formed between a source electrode and a drain electrode for controlling a normally-off channel region of the dual-gate normally-off nitride transistor. A second gate structure is formed between the first gate structure and the drain electrode for modulating a normally-on channel region underneath the second gate structure. The magnitude of the threshold voltage of the second gate structure is smaller than the drain breakdown of the first gate structure for proper operation of the dual-gate normally-off nitride transistor.
Abstract:
A system and method for controlling an AC motor drive includes a control system programmed with an energy algorithm configured to optimize operation of the motor drive. Specifically, the control system receives input of an initial voltage-frequency command to the AC motor drive, receives a real-time output of the AC motor drive generated according to the initial voltage-frequency command, and determines a real-time value of a motor parameter based on the real-time output of the AC motor drive. The control system also inputs a plurality of modified voltage-frequency commands to the AC motor drive, determines the real-time value of the motor parameter corresponding to each of the plurality of modified voltage-frequency commands, and identifies an optimal value of the motor parameter based on the real-time values of the motor parameter. The control system maintains an input of a current modified voltage-frequency command when the real-time value of the motor parameter corresponds to the optimal value of the motor parameter.