Abstract:
A radio transmission device capable of improving channel estimation precision for each frequency. In this device, an FFT unit (103) subjects a data signal to a Fourier transformation. A signal substitution unit (108) substitutes the frequency component of a portion of a plurality of frequency components composing the Fourier-transformed data signal, for a pilot signal. An IFFT unit (109) subjects the data signal, the frequency component of which has been partially substituted for the pilot signal, to an inverse Fourier transformation. A transmission RF unit (111) transmits the inversely Fourier-transformed data signal on a single carrier.
Abstract:
A radio transmission apparatus performs communications with high transmission efficiency. In this apparatus, a modulator modulates data and outputs to a first spreader. A second modulator modulates data under a modulation scheme having a higher M-ary number than the first modulator and outputs the modulated data to a second spreader. The first spreader spreads the data and outputs the spread data to a frequency domain mapping section. The second spreader spreads the data and outputs the spread data to a time domain mapping section. A frequency domain mapping section maps chips with spread data on subcarriers in the frequency domain and outputs the data with chips mapped on subcarriers to an IFFT section. The time domain mapping section maps chips with spread data on subcarriers in the time domain and outputs the data with chips mapped on subcarriers to the IFFT section.
Abstract:
A radio communication apparatus of the present invention aims at improving an error rate characteristic in the end receiver. A repeater (radio relay device) RS2 receives a signal transmitted from a repeater RS1 at a point of time of signal transmission from the repeater RS1, and detects whether or not an error exists in the signal at a point of time of transmission. Also, when the repeater RS2 detects the error from a systematic bit S of the transmitted signal from the repeater RS1, such repeater RS2 generates error position information EI, replace a part of a parity bit P with the error position information EI, and transmits a resultant signal. The error detection result is notified through the control channel. The mobile station (mobile terminal) MS makes an error correction based on the error position information EI, and demodulates the signal by executing an error correction decoding process.
Abstract:
A retransmission control scheme and a wireless communication apparatus wherein the efficiency of retransmission control is enhanced to further improve the system throughput. In this wireless communication apparatus (100), an error occurrence factor addressing part (140) receives information related to the error occurrence factor of a transmitted packet or information related to the schemes of forming or transmitting a retransmittal packet corresponding to that error occurrence factor, and switches, based on the received information, the schemes of forming or transmitting the retransmittal packet. In this way, the schemes of forming or transmitting the retransmittal packet can be switched in accordance with the error occurrence factor of the transmitted packet. At the end of receiving the retransmittal packet, therefore, the performing of a decoding processor the like in accordance with that scheme of forming or transmitting can enhance the efficiency of the retransmission control. As a result, the system throughput can be improved.
Abstract:
Disclosed is a wireless communication terminal device that is capable of preventing inter-coding interference upon each of a plurality of base stations, even when the timing changes for a transmission of a control signal that is CoMP received by the plurality of base stations. Upon the device, a diffusion unit (214) employs any of a plurality of ZAC series that are reciprocally splittable with a reciprocally variable cyclical shift quantity to diffuse a response signal, according to an instruction from a control unit (209), and the control unit (209) controls, according to a difference between a timing of a transmission of a response signal at a first time and a timing of a transmission of a response signal at a second time that is later than the first time, the cyclical shift quantity of the ZAC series that is employed by the diffusion unit (214) at the second time.
Abstract:
Provided is a base station capable of performing cell search of all mobile stations having different communicable frequency band widths in a scalable band width communication system to which a multi-carrier communication method such as the OFDM method is applied. The base station includes: a modulation unit (102) for modulating SCH data after being encoded; a sub carrier setting unit (105) for setting one of the sub carriers to a sub carrier (SCH sub carrier) constituting the OFDM symbol for SCH data transmission; and an IFFT unit (106) for mapping the SCH data to the sub carrier set by the sub carrier setting unit (105) among the sub carriers and performing IFFT to generate an OFDM symbol. The sub carrier setting unit (105) sets one of the sub carriers which has a frequency of a common multiple between the sub carrier interval and the cell search interval as an SCH sub carrier.
Abstract:
A mobile communication system which is capable of, when carrying out mobile communication using a shared channel, increasing in efficiency of transmission timing of the data transmission rate request value to prevent wasteful power consumption and hence reduce power consumption. A mobile station apparatus of the mobile communication system measures CIR of the received signal from a base station apparatus at a CIR measuring section, and decides the data transmission rate request value corresponding to the measured CIR value at a rate request value deciding section. Also, it detects an error of the received signal at a CRC section, and, when no error is found, calculates a difference between the average data transmission rate from a base station apparatus and the data transmission request value at a rate request value transmission controlling section. Then, it transmits the data transmission rate request value to the base station apparatus only when the obtained difference is larger than a threshold value.
Abstract:
Provided is a radio communication method or the like for making compatible an improvement in error rate characteristics and a reduction in delay. The radio communication method is used in a mobile communication system including a mobile station, a relay station and a base station. A transmitted signal containing a signal addressed to the base station is transmitted at first from the mobile station to the relay station. A non-reproduced relay signal obtained in the relay station from the transmitted signal is transmitted from the relay station to the base station. On the basis of the reception result of the non-reproduced relay signal at the base station, a re-transmission request of the transmitted signal is transmitted from the base station. A reproduced relay signal, as obtained from the transmitted signal in the relay station, is transmitted from the relay station to the base station in accordance with the re-transmission request transmitted from the base station.
Abstract:
A radio transmitting apparatus and method thereof wherein a guard interval (GI) having a variable length allows a radio receiving apparatus to precisely and easily obtain a symbol synchronization. A GI adding part adds a short GI or a long GI to the head of each of a plurality of data parts. In a case of adding the long GI, the GI adding part copies the symbols of a portion of a second data part, which immediately follows a first data part, including the rear of the second data part, and then adds the copied symbols to the head of the first data part, thereby providing a second GI. Moreover, the GI adding part copies the symbols to a portion of the first data part including the rear thereof, and then adds the copied symbols to the head of the second GI, thereby providing the first GI.
Abstract:
A communication relay apparatus wherein the error rate characteristic of a relay destination is improved to raise the throughput, while reducing the given interference power to prevent the reduction of the throughput of the whole communication system. In the apparatus, a signal addressed to a base station is received (ST1010), and a decoding process and other processes are performed (ST1020). A bit error determination is performed (ST1030), and if there is no bit error, a reproduction/relay process (ST1050) is performed. If there is any bit error, a threshold-based determination of reception quality is performed for each of subcarriers (ST1120-1130). If the reception quality is greater than a threshold value, the corresponding subcarrier is outputted (ST1140); otherwise, the corresponding subcarrier is not relayed (ST1150). A signal, which has been subjected to either process, is transmitted (ST1060).