Abstract:
A component of a gas turbine engine having: an internal cooling cavity; a baffle insert configured to be inserted into the internal cooling cavity; a plurality of trip strips extending upwardly from an exterior surface of the baffle insert; at least one separating feature located between a pair of ends of a pair of the plurality of trip strips, wherein the plurality of trip strips and the at least one separating feature are spaced from an interior surface of the internal cooling cavity; a plurality of trip strips extending upwardly from the interior surface; and at least one separating feature located between a pair of ends of the plurality of trip strips located on the interior surface of the internal cooling cavity, wherein the plurality of trip strips and the at least one separating feature of the interior surface are spaced from the exterior surface of the baffle insert.
Abstract:
A baffle insert for a component of a gas turbine engine is provided. The baffle insert having: a plurality of trip strips extending upwardly from an exterior surface of the baffle insert; and at least one rib extending upwardly from the exterior surface of the baffle insert.
Abstract:
A surface structure having a filmhole pattern is disclosed. The filmhole pattern may be an offset herringbone pattern. For instance, the surface structure may have rows of filmholes arranged in filmrows, each filmrow divided into groups of filmholes. A first group may be oriented to direct cooling air generally outward over a surface of the surface structure and a second group may be oriented to direct cooling air generally inward over a surface of the surface structure. Between the first group and the second group of filmholes in each filmrow, a transition region exists. The adjacent filmrows are arranged to enhance the effectiveness of the convective cooling proximate to the transition regions by causing each filmrow to direct cooling air over the transition region of an adjacent filmrow.
Abstract:
A method for forming a gas turbine engine component comprises the steps of forming a block of a high temperature alloy material. An external surface of the block is machined to form an external surface of a gas turbine engine component. At least one cooling passage within the component that is open to at least one end of the component is machined. At least one insert with a heat transfer feature is formed. The insert is installed within the at least one cooling passage. A component for a gas turbine engine is also disclosed.
Abstract:
A component for a gas turbine engine according to an example of the present disclosure includes, among other things, a body including a cold side surface adjacent to a mate face. A plurality of ridges extends from the cold side surface. A seal member abuts the plurality of ridges to define a plurality of cooling passages. The seal member is configured to move between a first position and a second position relative to the plurality of ridges. Each of the plurality of cooling passages includes a first inlet defined at the first position and a second, different inlet defined at the second position. A method of sealing between adjacent components of a gas turbine engine is also disclosed.
Abstract:
An airfoil includes an airfoil body extending from an inner diameter platform to an opposed outer diameter platform along a longitudinal axis. The airfoil body defines a leading edge and a trailing edge and has a cavity defined between the leading edge, the trailing edge, the inner diameter platform and the outer diameter platform. The cavity includes an airfoil protrusion extending inward from an inner surface of the airfoil body. The airfoil includes a baffle body within the cavity extending along a baffle body axis. The baffle body has a baffle protrusion extending along a central protrusion axis at an angle with respect to the baffle body axis. The end of the baffle protrusion abuts an end of the airfoil protrusion. A flow path is defined between the inner surface of the airfoil body and the outer surface of the baffle body.
Abstract:
In various embodiments, an airfoil used as a turbine blade for a turbine wheel in a gas turbine engine is provided. The airfoil may comprise a root, a tip, and a body. The root may have a first area. The tip may have a second area. The body may have a chord bounded by the root and the tip. The body may also define a cooling chamber. The cooling chamber may have a first rib substantially perpendicular to the chord. The cooling chamber may also have a second rib extending partially between the root and the tip.
Abstract:
One embodiment includes a method to regenerate a component (10). The method includes additively manufacturing a component (10) to have voids greater than 0 percent but less than approximately 15 percent in a near finished shape. The component (10) is encased in a shell mold (22). The shell mold (22) is cured. The encased component (10) is placed in a furnace and the component (10) is melted. The component (10) is solidified in the shell mold (22). The shell mold (22) is removed from the solidified component (10).
Abstract:
One exemplary embodiment of this disclosure relates to a component for a gas turbine engine. The component includes a baffle provided in an internal cavity of the component. The baffle includes a wall having an orifice therethrough, and the baffle further includes a lobe extending from the wall and at least partially covering the orifice.
Abstract:
A gas turbine engine is provided. The gas turbine engine includes an engine casing structure and a part retained relative to the engine casing structure by a channel-cooled hook. The channel-cooled hook includes at least a portion of a hook cooling channel. A vane assembly for the gas turbine engine is also provided.