METHOD OF CONTROLLING SALINITY OF AN INJECTION WATER DURING COMMISSIONING OF AN INJECTION WELL

    公开(公告)号:US20200248514A1

    公开(公告)日:2020-08-06

    申请号:US16637285

    申请日:2018-08-09

    Abstract: An integrated system includes a desalination plant including a reverse osmosis (RO) array to produce an RO permeate blending stream and a nanofiltration (NF) array to produce an NF permeate blending stream. The integrated system also includes a blending system, a control unit, and an injection system for an injection well that penetrates an oil-bearing layer of a reservoir. The blending system is to blend the RO permeate blending stream and the NF permeate blending stream to produce a blended injection water stream. The control unit is to dynamically alter operation of the blending system to adjust amounts of at least one of the RO permeate blending stream and the NF permeate blending stream to alter the composition of the blended injection water stream from an initial composition to a target composition.

    SEISMIC SENSOR
    132.
    发明申请
    SEISMIC SENSOR 审中-公开

    公开(公告)号:US20200241156A1

    公开(公告)日:2020-07-30

    申请号:US16649546

    申请日:2017-09-21

    Abstract: A seismic sensor includes an outer housing having a central axis, an upper end, a lower end, and an inner cavity. In addition, the seismic sensor includes a proof mass moveably disposed in the inner cavity of the outer housing. The outer housing is configured to move axially relative to the proof mass. Further, the seismic sensor includes a first biasing member disposed in the inner cavity and axially positioned between the proof mass and one of the ends of the outer housing. The first biasing member is configured to flex in response to axial movement of the outer housing relative to the proof mass. The first biasing member comprises a disc including a plurality of circumferentially-spaced slots extending axially therethrough. Still further, the seismic sensor includes a sensor element disposed in the inner cavity and axially positioned between the first biasing member and one of the ends of the outer housing. The sensor element includes a piezoelectric material configured to deflect and generate a potential in response to the axial movement of the outer housing relative to the proof mass and the flexing of the first biasing member.

    Method of Controlling Salinity of a Low Salinity Injection Water

    公开(公告)号:US20200230554A1

    公开(公告)日:2020-07-23

    申请号:US16645426

    申请日:2018-09-12

    Abstract: A method includes producing a first blended low salinity injection water for injection into at least one injection well that penetrates a first region of an oil-bearing reservoir and producing a second blended low salinity injection water for injection into at least one injection well that penetrates a second region of an oil-bearing reservoir. The reservoir rock of the first and second regions has first and second rock compositions, respectively, that present different risks of formation damage. The first and second blended low salinity injection waters comprise variable amounts of nanofiltration permeate and reverse osmosis permeate. The compositions of the first and second blended low salinity injection waters are maintained within first and second predetermined operating envelopes, respectively, that balance improving enhanced oil recovery from the first and second regions while reducing formation damage upon injecting the first and second blended low salinity injection waters into the oil-bearing reservoir.

    Detecting Downhole Sand Ingress Locations
    134.
    发明申请

    公开(公告)号:US20200182047A1

    公开(公告)日:2020-06-11

    申请号:US16091519

    申请日:2017-04-06

    Abstract: A method of detecting sand inflow into a wellbore is disclosed. The method can include obtaining a sample data set, detecting a broadband signal within the sample data set, comparing the broadband signal with a signal reference, determining that the broadband signal meets or exceeds the signal reference, and determining the presence of sand inflow into the wellbore based on determining that the broadband signal meets or exceeds the signal reference. The sample data set can be a sample of an acoustic signal originating within a wellbore comprising a fluid, and the broadband signal at least includes a portion of the sample data set at frequencies above 0.5 kHz.

    Hydrocarbon recovery process
    135.
    发明授权

    公开(公告)号:US10579025B2

    公开(公告)日:2020-03-03

    申请号:US15307287

    申请日:2015-04-15

    Inventor: Peter Salino

    Abstract: A method for recovering crude oil from a reservoir that is penetrated by at least one injection well and at least one production well wherein the reservoir comprises a first carbonate rock layer and a second carbonate rock layer each having crude oil and a resident water present within the pore space thereof, the method comprising: isolating the second rock layer from direct hydraulic communication with the injection well; and injecting an injection water having a total-dissolved-solids (TDS) content lower than the TDS content of the resident water from the injection well into the first rock layer thereby forming a sulfate enriched aqueous displacement fluid through dissolution of water-soluble sulfate minerals from the first rock layer into the injection water wherein the displacement fluid flows through the first rock layer and from the first rock layer into and through the second rock layer thereby displacing oil towards the production well.

    Detecting Downhole Sand Ingress Locations
    136.
    发明申请

    公开(公告)号:US20200032639A1

    公开(公告)日:2020-01-30

    申请号:US16563544

    申请日:2019-09-06

    Abstract: A method of detecting sand inflow into a wellbore is disclosed. The method can include obtaining a sample data set, detecting a broadband signal within the sample data set, comparing the broadband signal with a signal reference, determining that the broadband signal meets or exceeds the signal reference, and determining the presence of sand inflow into the wellbore based on determining that the broadband signal meets or exceeds the signal reference. The sample data set can be a sample of an acoustic signal originating within a wellbore comprising a fluid, and the broadband signal at least includes a portion of the sample data set at frequencies above 0.5 kHz.

    Detecting Downhole Events Using Acoustic Frequency Domain Features

    公开(公告)号:US20190390546A1

    公开(公告)日:2019-12-26

    申请号:US16563689

    申请日:2019-09-06

    Abstract: A method of detecting an event within a wellbore includes obtaining a sample data set, determining a plurality of frequency domain features of the sample data set, comparing the plurality of frequency domain features with an event signature, determining that the plurality of frequency domain features matches the thresholds, ranges, or both of the event signature, and determining the presence of the event within the wellbore based on determining that the plurality of frequency domain features match the thresholds, ranges, or both of the event signature. The sample data set is a sample of an acoustic signal originating within a wellbore including a fluid. The sample data set is representative of the acoustic signal across a frequency spectrum. The event signature includes a plurality of thresholds, ranges, or both corresponding to the plurality of frequency domain features.

    Method and system for configuring crude oil displacement system

    公开(公告)号:US10227858B2

    公开(公告)日:2019-03-12

    申请号:US14790090

    申请日:2015-07-02

    Abstract: A computer-implemented method for determining one or more operating modes for a crude oil displacement system is provided. The crude oil displacement system is arranged to inject an aqueous displacement fluid into one or more reservoirs, each reservoir comprising a porous and permeable rock formation, wherein crude oil and formation water are contained within a pore space of the rock formation. The crude oil displacement system is for use in displacing crude oil from the pore space of the rock formation. The computer-implemented method comprises the steps of receiving measurement data associated with one or more chemical characteristics of the displacement fluid and one or more chemical characteristics of the rock formation, the crude oil and the formation water of the one or more reservoirs, and inputting the measurement data and data representing a predetermined volume of oil into a computer-implemented predictive model. The predictive model is operated so as to generate predicted data indicative of a predicted additional amount of oil, compared to the predetermined volume of oil, that will be displaced by configuring the crude oil displacement system so as to inject the displacement fluid having the chemical characteristics into the one or more reservoirs. On the basis of the predicted data, the one or more operating modes of the crude oil displacement system are determined. A further computer-implemented method employing the predictive model in which predicted data indicative of one or more predicted chemical characteristics of the displacement fluid are generated is also provided. Additionally, a system for configuring a crude oil displacement system is provided.

    Seismic sensor
    139.
    发明授权

    公开(公告)号:US10139506B2

    公开(公告)日:2018-11-27

    申请号:US15125859

    申请日:2015-03-12

    Abstract: A seismic survey apparatus includes a body, a proof mass, at least one sensor arranged to detect movement of the proof mass relative to the body. In addition, the seismic survey apparatus includes electronic circuitry connected to the at least one sensor. The electronic circuitry is configured to receive and process an output of the sensor. A power supply is arranged to provide electrical power to the electronic circuitry with the power supply being an integral part of the proof mass.

    Concentration determining method and system

    公开(公告)号:US09845674B2

    公开(公告)日:2017-12-19

    申请号:US14908175

    申请日:2014-07-23

    Abstract: A computer-implemented method and corresponding system for determining the concentration of one or more scale inhibiting polymers in a fluid received from one or more porous and permeable hydrocarbon-bearing rock formations is provided. Each polymer comprises a different chemical marker and the fluid comprises a plurality of commingled said scale inhibiting polymers. The method comprises receiving first input data representing a measured absorption spectrum, within a predetermined wavelength range, of the commingled scale inhibiting polymers, wherein the measured absorption spectrum is measured using a detector after chromatographic separation of the fluid; receiving second input data representing reference absorption spectra, the reference absorption spectra comprising: a) an absorption spectrum, over the predetermined wavelength range, of each of the scale inhibiting polymers; and b) baseline reference absorption spectra of other chemicals having absorbance values within the predetermined wavelength range that are expected to be present in the fluid; inputting the first and second input data into a computer program; and operating the computer program. The computer program is operated to, at each of a plurality of discrete time steps over an elution time from the separation, determine a factor for each reference absorption spectrum that results in a modelled spectrum comprising a best-fit linear combination of the second input data to the first input data. For each scale inhibiting polymer, the computer program also operates to use the factors corresponding to the absorption spectrum of said scale inhibiting polymer that have been determined for a predetermined number of said discrete time steps to determine an indication of the concentration of the scale inhibiting polymer.

Patent Agency Ranking