Abstract:
A liquid crystal display module includes a liquid crystal display panel to display an image; a back light unit to irradiate light onto the liquid crystal display panel includes a luminescent lamp to emit light, a light guide panel to convert light emitted from the luminescent lamp into plane light and to emit the plane light, a lamp housing to fix the luminescent lamp to the light guide panel, the lamp housing condenses the light generated from the luminescent lamp, a reflection plate formed on the rear surface of the light guide panel to reflect light, and optical sheets formed on the front surface of the light guide panel; a main support to receive the liquid crystal display panel and the back light unit; and a reinforcing member formed on the rear surface of the light guide panel and overlapping the lamp housing and the reflection plate.
Abstract:
A white organic light emitting device includes an anode; a cathode; and a light emitting region comprising one or more phosphorescent materials that emit red light, one or more phosphorescent materials that emit green light, and one or more fluorescent materials that emit blue light.
Abstract:
A sputtering apparatus includes a cathode for generating a plasma; one or more target on a front surface of the cathode; a plurality of magnets at a first distance from a back of the cathode for generating a first magnetic field intensity in the plasma; and a plurality of guide members for moving the individual magnets in a direction substantially perpendicular to the cathode to a second distance from the back of the cathode to change the first magnetic field intensity to a second magnetic field intensity.
Abstract:
Disclosed is a pixel structure of a liquid crystal display including: a first substrate with red, green and blue color filters; a second substrate comprising; a TFT; a data bus line carrying a data signal that is applied to the TFT to drive unit pixels; and a gate bus line in which a bump-shaped groove is formed at a region where the gate bus line crosses and overlaps the data bus line to prevent the data bus line from opening and through which a gate signal is applied: wherein current is selectively supplied to the pixel electrode of the unit pixel region defined by the gate bus line and the data bus line so that an electric field is generated between the first substrate and the second substrate; and a liquid crystal layer between the first substrate and the second substrate.
Abstract:
An apparatus for driving a lamp of a liquid crystal display device includes a transformer to supply a voltage to a lamp and a voltage detector having a first resistance connected between a secondary winding wire of the transformer and a ground voltage source, a rectifier connected to the secondary winding wire of the transformer, and a second resistance connected between the rectifier and the ground voltage source to detect a voltage induced onto the secondary winding wire of the transformer.
Abstract:
A packaging structure of a driving circuit for a liquid crystal display device comprises a base film, a plurality of first metal lines being formed on the base film and being disposed with a certain distance between neighboring first metal lines, an insulating film on the first metal lines, the insulating film exposing both ends of the first metal lines, and a plurality of second metal lines on the insulating film, the second metal lines being formed parallel to the first metal lines.
Abstract:
A liquid crystal display device includes first and second substrates facing each other, first and second column spacers on the second substrate, a protrusion on the first substrate corresponding to the first column spacer, a compensation pattern on the first substrate corresponding to a periphery of the second column spacer, and a liquid crystal layer between the first and second substrates.
Abstract:
A color filter substrate includes a substrate, a black matrix that defines cell areas on a substrate and prevents light leakage, a color filter formed in the cell areas defined by the black matrix, and a conductive thin film formed on the rear surface of the substrate for preventing the generation of static electricity, wherein the conductive thin film is formed of a photo-resist containing a conductive material.
Abstract:
An organic electro-luminance display device includes a first substrate including a plurality of sub-pixels, a first electrode on the first substrate, a buffer layer on the first electrode of a region that partitions each of the sub-pixels, a spacer on the buffer layer, the buffer layer and the spacer being integrally formed, an organic light-emitting layer on the first electrode that corresponds to each of the sub-pixels and the spacer, and a second electrode on the organic light-emitting layer.
Abstract:
A method for fabricating an LCD by liquid crystal dropping includes the steps of (a) loading a first substrate and a second substrate on a bonding chamber, (b) bonding the first and second substrates, (c) venting the bonding chamber for applying a pressure to the bonded first and second substrates, and (d) unloading the pressed first and second substrates.