Abstract:
An improved collector electrode for an electrostatic precipitation air filter including a voltage source, an ion emitter, insulated drive electrodes, and attraction electrodes. The insulated drive electrodes include a multi-part structure having an electrically conductive material located between non-electrically conductive portions. The insulated drive electrodes allow an increased voltage potential between the attraction electrodes and the drive electrodes.
Abstract:
The invention relates to a retainer for an electrostatic high-voltage electrode, containing a high-voltage insulator, on the electrode side of the insulator at least one arm having a retaining means for retaining a high-voltage electrode hanging on the retaining means preferably vertically, and on the installation side of the insulator at least one installation means for installing the retainer at an installation point outside an exhaust gas channel of a chimney. Said retainer is characterized in that the retainer is equipped with at least one restoring element, which forms an articulated connection between the at least one installation means and the retaining means and which allows the retaining means and optionally a high-voltage electrode attached thereto to move out of the way from the operating position during cleaning in the exhaust gas channel with a cleaning device and allows an automatic return to the operating position.
Abstract:
A device includes a chamber having an air inlet and an air outlet. The device includes a plurality of stages including at least a first stage adjacent a second stage. The plurality of stages are disposed in the chamber and each stage has a plurality of discharge electrodes disposed in an interior region and is bounded by an upstream baffle on an end proximate the air inlet and bounded by a downstream baffle on an end proximate the air outlet. Each stage has at least one sidewall between the upstream baffle and the downstream baffle. The sidewall is configured as a collection electrode and has a plurality of apertures disposed along a length between the upstream baffle and the downstream baffle. The upstream baffle of the first stage is positioned in staggered alignment relative to the upstream baffle of the second stage and the downstream baffle of the first stage are positioned in staggered alignment relative to the downstream baffle of the second stage.
Abstract:
Methods and systems for fluid stabilization are provided. The system includes a first electrical field generator positioned adjacent to a first passage. The first electrical field generator imparts a first electrical field to a fluid flowing through the first passage such that first particles and second particles entrained in the fluid are charged to a first polarity. A first collector positioned within the first passage collects the first particles charged in the fluid. A second electrical field generator positioned adjacent to a second passage is downstream from the first electrical field generator. The second electrical field generator imparts a second electrical field to the fluid discharged from the first passage and substantially neutralizes the second particles entrained in the fluid.
Abstract:
A method and apparatus are provided for reducing quench water required by a wet electrostatic precipitator. The apparatus includes a wet electrostatic precipitator and an evaporator in flow communication with the wet electrostatic precipitator to evaporate at least one portion of bleed water discharged from the wet electrostatic precipitator into steam. The method includes directing at least one portion of bleed water discharged from the wet electrostatic precipitator to an evaporator and directing at least one portion of flue gas from a boiler to the evaporator. The energy of the at least one portion of flue gas is used to evaporate the at least one portion of the bleed water into steam. The steam is directed to the wet electrostatic precipitator. The at least one portion of flue gas is directed from the evaporator to the wet electrostatic precipitator.
Abstract:
An electric separating apparatus has a separating tank and an electrical control. The separating tank has at least one first electrode panel, a second electrode panel, an upper separating region and a lower separating region. The electrode panels are vertically mounted in the separating tank to form the separating regions. The electrical control is electrically connected to the separating tank and has a transformer, a high-power resistor, a first A/C transformer, a second A/C transformer and a control unit. The transformer is electrically connected to an A/C source and the electrode panels. The high-power resistor is electrically connected to the transformer and the at least one first electrode panel in series. The A/C transformers are respectively connected to the high-power resistor and the electrode panels. The control unit is electrically connected to the A/C transformers to determine an electrical impedance of a liquid mixture in the tank.
Abstract:
An electrostatic precipitator for removing solid and liquid components from an aerosol includes a precipitator housing having a raw gas inlet for an aerosol to be cleaned, a clean gas outlet for cleaned aerosol, and at least one aerosol supply channel flange-mounted to the raw gas inlet, a drain device for solid and liquid components that are separated from the aerosol, an ionization stage externally powered via a high-voltage bushing and including at least one metallic high-voltage rod that extends into a flow path of the aerosol and to which high voltage is applyable, and a collector stage disposed in the flow path downstream of the ionization stage.
Abstract:
The present invention provides methods and systems for a bipolar ionization device that includes an electrically insulated base, a power input terminal, an anode engaged to the base and the power input terminal, a cathode that partially circumscribes the anode, and plurality of tines extending perpendicularly from the anode having a lower portion and a top portion, wherein the lower portion is engaged to the anode and is wider than the top portion.
Abstract:
The present invention provides an exhaust gas purifying device including an electrically insulated hollow cylindrical case, a cylindrical outer circumferential electrode arranged on an inner wall of the hollow cylindrical case, a bar-shaped center electrode held on a center axis of the outer circumferential electrode, and a metallic hollow cylindrical body arranged between the outer circumferential electrode and the center electrode, wherein the metallic hollow cylindrical body is electrically insulated and has a plurality of holes to permit particulate matter to pass therethrough without being accumulated.
Abstract:
An electro-kinetic or electro-static apparatus for moving fluid includes an enlogated electrode energizable with respect to at least one other electrode to generate ions and thereby motivate fluid flow there between. A cleaning device is positioned to frictionally engage at least two opposing surfaces of the elongated electrode. The cleaning device is movable along a length of the elongated electrode to thereby remove detrimental material from the at least two opposing surfaces of the elongated electrode. The cleaning device can be substantially off-center relative to the elongated electrode to frictionally bind upon the elongated electrode during movement of the cleaning device.