Abstract:
A portable ultraviolet light (UV) transmittance meter employs a UV lamp and UV sensor to measure the transmittance of a water sample. The level of UV radiation received when the sample is positioned between the UV sensor and the UV lamp is compared to a level received when a zeroing sample (blank) is positioned in the same location in the same vial. A ratio of the UV signals for the blank and sample is correlated to a transmittance level by a data correlation table or calibration curve. The value provided by the data correlation table is communicated to the user in the form of a transmittance range, within which the sample transmittance falls.
Abstract:
Disclosed herein is a radiation image conversion panel that has a phosphor layer. The phosphor layer contains a binding agent, a phosphor particle, and at least aryl carboxylic acid or alicyclic carboxylic acid, expressed by the following general Formula: RnullR1nullCOOX, or RnullCOOX in which R represents (1) an aryl group; (2) an aryl group, replaced with an alkyl group whose number of carbons is 1 to 5, a hydroxyl group, a carboxylic acid group, or a halogen group; (3) a hydroaryl group; or (4) a hydroaryl group (alicyclic group), replaced with an alkyl group whose number of carbons is 1 to 5, a hydroxyl group, or a halogen group; R1 is a hydrocarbon radical whose number of carbons is 1 to 12; and X represents a hydrogen atom, alkaline metal, or nullNnull (R2)4 (where R2 represents an alkyl group whose number of carbons is 2 or less).
Abstract:
An ultraviolet radiation generating system and methods is disclosed for treating a coating on a substrate, such as a coating on a fiber optic cable. The system comprises a microwave chamber having one or more ports capable of permitting the substrate to travel within or through a processing space of the microwave chamber. A microwave generator is coupled to the microwave chamber for exciting a longitudinally-extending plasma lamp mounted within the processing space of the microwave chamber. The plasma lamp emits ultraviolet radiation for irradiating the substrate in the processing space. A pair of reflectors are mounted within the processing space of the microwave chamber. The reflectors are capable of reflecting a significant portion of the ultraviolet radiation to irradiate the backside of the substrate in a surrounding and uniform fashion. When the system is operating, the microwave chamber is substantially closed to emission of microwave energy and ultraviolet radiation.
Abstract:
In a particle projection lithography system, an alignment system is used to determine alignment parameters to measure the position and shape of an optical image of a pattern of structures formed in a mask and imaged onto a target by means of a broad particle beam, by means of an apparatus with a plurality of alignment marks adapted to produce secondary radiation upon irradiation with radiation of said particle beam. In order to allow for a variation of the alignment parameters along the optical axis, the alignment marks are positioned outside the aperture of the alignment system for the part of the beam that generates said optical image, arranged at positions to coincide with particle reference beams projected through reference beam forming structures provided on the mask while said optical image is projected onto the target, and situated on at least two different levels over the target as seen along the directions of the respective reference beams.
Abstract:
A high energy photon source. A pair of plasma pinch electrodes are located in a vacuum chamber. The chamber contains a working gas which includes a noble buffer gas and an active gas chosen to provide a desired spectral line. A pulse power source provides electrical pulses at repetition rates of 1000 Hz or greater and at voltages high enough to create electrical discharges between the electrodes to produce very high temperature, high density plasma pinches in the working gas providing radiation at the spectral line of the source or active gas. A fourth generation unit is described which produces 20 mJ, 13.5 nm pulses into 2 null steradians at repetition rates of 2000 Hz with xenon as the active gas. This unit includes a pulse power system having a resonant charger charging a charging capacitor bank, and a magnetic compression circuit comprising a pulse transformer for generating the high voltage electrical pulses at repetition rates of 2000 Hz or greater.
Abstract:
A high energy photon source. A pair of plasma pinch electrodes are located in a vacuum chamber. The chamber contains a working gas which includes a noble buffer gas and an active gas chosen to provide a desired spectral line. A pulse power source provides electrical pulses at repetition rates of 1000 Hz or greater and at voltages high enough to create electrical discharges between the electrodes to produce very high temperature, high density plasma pinches in the working gas providing radiation at the spectral line of the source or active gas. A fourth generation unit is described which produces 20 mJ, 13.5 nm pulses into 2 null steradians at repetition rates of 2000 Hz with xenon as the active gas. This unit includes a pulse power system having a resonant charger charging a charging capacitor bank, and a magnetic compression circuit comprising a pulse transformer for generating the high voltage electrical pulses at repetition rates of 2000 Hz or greater. Gas flows in the vacuum chamber are controlled to assure desired concentration of active gas in the discharge region and to minimize active gas concentration in the beam path downstream of the pinch region. In a preferred embodiment, active gas is injected downstream of the pinch region and exhausted axially through the center of the anode. In another preferred embodiment a laser beam generates metal vapor at a location close to but downstream of the pinch region and the vapor is exhausted axially through the anode.
Abstract:
The method for making a multilayer composite having one or more colors brings together a number of acrylic layers, which are partially cured in a first step and completely cured in a second step. The curing takes place with actinic radiation, such as accelerated electrons, UV radiation or X-ray radiation, the curing unit operating with different dosage rates during the two steps. The curable acrylic layers are applied to the respective supporting layers by screen printing or stencil printing, or else may be applied to the supporting layers by casting or with the aid of printing rollers.
Abstract:
A method and an apparatus for measuring viewing-angle dependent luminance (luminance characteristic) of an LCD panel by condensing radiation from LCD pixels by means of a condensing device which includes a mirror, and by forming a real image of the pixels on an CCD imaging device. Correct luminance characteristic of the LCD panel is calculated by making a correction of the data thus obtained using a predetermined condensing function. The correction removes blurring of data due to condensing effect of the condensing device, thereby preventing degradation of the resolution of the angular luminance measurement apparatus. The condensing device and the CCD imaging device are moved depending on the viewing-angle of the pixels. When the intensity of light entering the condensing device decreased by the move, the correction is performed.
Abstract:
An ultra-violet lamp and reflector/shield assembly designed to be mounted in a commercial HVAC, and to other types of A/C units is described herein. The reflector/shield includes a reflective inner surface creating an illumination pattern and an outer surface shielding the UV lamp from the air flow. An orienting and securing assembly for a UV lamp is also described herein.
Abstract:
Apparatus and method for mounting electronic components enhanced in mounting efficiency by eliminating loss time are disclosed. In the apparatus and method, electronic components are picked up from a supplying unit of the electronic components by a transfer head, and are mounted on a board. The height of components already mounted on the board being conveyed is measured by a height measuring unit comprising a CCD light sensor including a light emitting unit and a light receiving unit. In mounting operation, the transfer height of the transfer head when moving on the board is set to a height enough to keep an allowance to the already mounted components on the basis of the height measurement of components. As a result, without useless elevating motions of the transfer head, the loss time is eliminated and the mounting efficiency is enhanced.