Abstract:
The computer readable memory has recorded thereon instruction code for execution by a computing device for use with an optical power loss measurement (OPLM) system. The instruction code generally comprises: code for displaying a first set of instructions including measuring a first power value of test light outputted from a first reference optical waveguide; code for displaying a second set of instructions including measuring a second power value of test light outputted from a reference waveguide link including the first reference optical waveguide connected in series to a second reference optical waveguide; code for displaying a third set of instructions including measuring a reference power value of the OPLM system resulting from the propagation of light from via the reference waveguide link; and code for determining a corrected reference power value based on the reference power value and on the first and second power values.
Abstract:
The reflectometric method for measuring an optical loss value of an optical fiber link generally comprises: obtaining at least one bias value being indicative of a bias induced by differing backscattering characteristics of a first optical fiber length and a second optical fiber length; propagating at least one test signal serially into the first optical fiber length, the optical fiber link and the second optical fiber length; monitoring at least one return signal resulting respectively from the propagation of the at least one test signal; and determining the optical loss value based on the at least one return signal and the at least one bias value.
Abstract:
A portable apparatus for measuring parameters of optical signals propagating concurrently in opposite directions in an optical transmission path between two elements, at least one of the elements being operative to transmit a first optical signal (S1) only if it continues to receive a second optical signal (S2) from the other of said elements, comprises first and second connector means for connecting the apparatus into the optical transmission path in series therewith, and propagating and measuring means connected between the first and second connector means for propagating at least the second optical signal (S2) towards the one of the elements, and measuring the parameters of the concurrently propagating optical signals (S1, S2). The measurement results may be displayed by a suitable display unit. Where one element transmits signals at two different wavelengths, the apparatus may separate parts of the corresponding optical signal portion according to wavelength and process them separately.
Abstract:
There is provided a method and an apparatus for determining quality parameters on a polarization-multiplexed optical signal based on an analysis of the power spectral density of the Signal-Under-Test (SUT). The method is predicated upon knowledge of the spectral shape of the signal in the absence of significant noise or spectral deformation. This knowledge is provided by a reference optical spectrum trace. Based on this knowledge and under the assumption that ASE noise level is approximately constant in wavelength over a given spectral range, the spectral deformation of the signal contribution of the SUT may be estimated using a comparison of the spectral variations of the optical spectrum trace of the SUT with that of the reference optical spectrum trace.
Abstract:
There is provided an OTDR method of assisting a user in finding a temporary event along an optical fiber link using an Optical Time Domain Reflectometer (OTDR). The method comprises: performing at least one OTDR acquisition toward the optical fiber link to obtain a baseline OTDR trace, wherein each OTDR acquisition is performed by propagating in the optical fiber link under test, a pulsed test signal and detecting corresponding return light from the optical fiber link so as to obtain an OTDR trace representing backscattered and reflected light as a function of distance in the optical fiber link; repeating OTDR acquisitions in real-time to obtain real-time OTDR traces; and for each new OTDR acquisition, comparing the corresponding real-time OTDR trace to the baseline OTDR trace to detect a temporary deformation of the OTDR trace using at least one of a difference between the baseline OTDR trace and the real-time OTDR trace and a derivative thereof, said temporary deformation being indicative of the presence of the temporary event along the optical fiber link.
Abstract:
Systems and methods for inspecting optical fibers are provided. A method, according to one implementation, includes steps of obtaining an image of an end-face of an optical fiber; analyzing the image with a pre-trained neural network model to classify pixels therein as any of a defect, a scratch, or clean; aggregating the pixels based on proximity to obtain defect segments or scratch segments; characterizing these defect segments and scratch segments based on but not limited to size and location, and providing an output including any of the defect segments or scratch segments.
Abstract:
There are provided methods and systems for testing the continuity of optical fiber links under test and/or a fiber arrangement, polarity or mapping of optical fiber connections within optical devices under test using the backscattering pattern as a signature. The device under test may comprises a single fiber, a duplex link, a multifiber cable or another multi-port device such as a backplane device.
Abstract:
An optical test instrument, in combination with a removable connector cartridge is provided. A method of replacing a damaged or worn optic fiber interface is also provided. The optical test instrument has casing having a cartridge receiving cavity therein with an inner end provided with a test instrument optical port; and an outer end provided with a cartridge receiving opening. The connector cartridge is sized and configured to be inserted in the cartridge receiving cavity. The connector cartridge has a cartridge inner end for facing the test instrument optical port when in use, and a cartridge outer end for receiving an optic fiber from a device under test (DUT). The connector cartridge houses a fiber optic cable extending between the cartridge inner end and the cartridge outer end. The connector cartridge is removably connectable to the instrument casing to allow replacement of the connector cartridge when the cartridge outer end is worn or damaged.