Abstract:
An optical waveguide device for loss absorption, and a fabrication method thereof, are provided. The optical waveguide device for loss absorption includes: a substrate of a predetermined material; a lower cladding formed on the substrate; an optical waveguide formed on the lower cladding, and formed of a material having a refractive index greater than a refractive index of the lower cladding; an upper cladding formed so as to completely cover the optical waveguide; and an absorption layer formed of a material having refractive index greater than a refractive index of the upper cladding, and formed on the upper cladding to a thickness which can absorb a reflected or radiated optical signal. As described above, an absorption layer capable of absorbing light is formed in the waveguide device upon fabricating the optical waveguide, thus minimizing or removing loss due to reflection and radiation of an optical signal.
Abstract:
A low-loss optically active device is provided by forming a lower clad layer using linear polymer on a substrate capable of transmitting ultraviolet (UV) light, forming a non-linear polymer core region of a waveguide region; forming a linear polymer core region on opposite sides of the non-linear core region, and forming an upper clad layer on the lower clad layer and linear and non-linear core regions of the waveguide region. The waveguide is formed using non-linear polymer only at the region where the non-linear effect such as optical modulation or optical switching occurs, and is formed using linear polymer at the remaining regions, thereby minimizing the overall waveguiding loss of the device.
Abstract:
A multiwavelength, multistage optical amplifier, which can be arranged in a cascade, substantially increases the degree of automatic power control (APC), multiwavelength APC (MAPC), and multiwavelength automatic gain control (MAGC), for at least two wavelengths. The multiwavelength, multistage optical amplifier or amplifier cascade has at least two spectrally different gain media (GM), i.e. first and second GM, connected in series for amplifying a signal having at least two wavelengths, i.e. first and second wavelengths. The first GM may be aluminosilicate erbium doped fiber, the second GM may be germanosilicate erbium doped optical fiber. The gain at the first wavelength is smaller than the gain at the second wavelength, while the signal power at the first wavelength is larger than the signal power at the second one, and vice versa. This may automatically compensate for loss tilt. The gain media may be homogeneously broadened.
Abstract:
A method of fabricating a semiconductor device includes forming a first fin-shaped pattern having a first fin mask pattern disposed thereon on a substrate, forming a second fin-shaped pattern having a second fin mask pattern disposed thereon on the substrate, forming a first trench by removing the first fin mask pattern, forming a fin-cut mask pattern filling the first trench, and removing the second fin mask pattern and the second fin-shaped pattern using the fin-cut mask pattern as a first etch mask.
Abstract:
A light emitting module includes a light emitting chip generating light, a case and a lead frame. The case includes a bottom plate and sidewalls connected to the bottom plate. The bottom plate and the sidewalls define a receiving space in which the light emitting chip is received. The light is emitted in a first direction through an opening portion opposite to the bottom plate. The lead frame includes an electrode portion disposed in the case, and electrically connected to the light emitting chip, a connecting portion extending from the electrode portion and disposed outside of the case, a mounted portion disposed adjacent to the connecting portion, and a buffering portion disposed between the connecting portion and the mounted portion. The buffering portion has a generally nonlinear shape protruding in a direction substantially perpendicular to the first direction.
Abstract:
A backlight assembly includes; a plurality of light guide blocks disposed substantially in parallel with each other along a first direction, each of the plurality of light guide blocks including; a light guide plate (“LGP”) having a wedge-shape decreasing in thickness from a first side thereof to a second side thereof, and a light source unit disposed facing a side surface of the LGP, and a light source driving unit which individually controls the light source units of the plurality of light guide blocks to emit light via a local dimming method.
Abstract:
A backlight assembly includes a light guide plate, a light source assembly disposed adjacent to at least one side of the light guide plate and supplies light to the light guide plate, a container receiving the light guide plate and the light source assembly and including a bottom portion and a first sidewall extended from edges of the bottom portion to form a receiving space, and a coupling member disposed inside the receiving space of the container, and overlapping an upper surface of the light source assembly. The light source assembly is disposed adjacent to the first sidewall, the bottom portion, the coupling member and the light guide plate. The insertion direction of the coupling member is substantially perpendicular to the bottom portion of the container.
Abstract:
Provided are a backlight assembly and a display device having the same. The backlight assembly includes; a light guide plate (“LGP”) having a light incident portion upon which light is incident and an opposite portion which is disposed substantially opposite to the light incident portion, a lower housing which accommodates the LGP therein, and at least one LGP fixing tape which fixes the LGP into the lower housing, wherein the at least one LGP fixing tape is interposed between the lower housing and lower surfaces of two opposite ends of the light incident portion of the LGP.
Abstract:
A liquid crystal display (LCD) capable of preventing light leakage includes first and second gate lines which extend in a horizontal direction, a data line which is insulated from the first and second gate lines and crosses the first and second gate lines, first and second thin film transistors (TFTs) which are respectively connected to the first and second gate lines and are connected to the data line, and a pixel electrode which extends in zigzag fashion at an inclination to the first and second gate lines and is divided into a first area and a second area in a direction in which the pixel electrode extends. The pixel electrode includes a first sub-pixel electrode which is connected to the first TFT and has the first area and upper and lower portions of the second area, and a second sub-pixel electrode which is connected to the second TFT, has a middle portion of the second area, and has a lateral side adjoining a first portion of the first sub-pixel electrode, an upper side adjoining a lower side of an upper second portion of the first sub-pixel electrode, and a lower side adjoining an upper side of a lower second portion of the first sub-pixel electrode, the first and second areas being connected by a plurality of connection electrodes, and at least one of the connection electrodes overlapping the second gate line.
Abstract:
An organic light-emitting diode (OLED) display device includes a display panel having an OLED element, a receiving container to receive the display panel, a driving circuit part that is disposed under the receiving container and drives the display panel, and a heat insulating member that is disposed between the display panel and the receiving container, and comprises a porous polymer. Deterioration of the light-emitting layer may be prevented and/or reduced to increase durability of the OLED display device.