Abstract:
The detection speed of a touch is improved and the reliability of a touch panel electrode formed on the outer side of a glass substrate is improved. A liquid crystal display device is provided in which a first electrode is formed on the outer side of a counter substrate as the first electrode is extended in a first direction. A second electrode extended in a direction perpendicular to the first direction is formed on the inner side of a TFT substrate. A touch panel function is provided on a liquid crystal display panel. The first electrode is formed of a metal or alloy. A protective film is formed to cover the first electrode. On the outer side of the first substrate, a groove is formed between the end portion of the protective film and the first electrode in parallel with the edge of the counter substrate.
Abstract:
A liquid crystal display panel is provided and includes a pair of substrates arranged face to face so as to sandwich a liquid crystal layer, a lower electrode formed on a lower substrate, an upper electrode formed on the lower substrate through an insulating layer, in which plural slits are formed in each sub-pixel, wherein each of the plural slits is formed as an aperture in which both ends thereof in the longitudinal direction are closed, and an alignment film formed so as to cover a surface of the upper electrode and the insulating layer. The plural slits have different widths at both ends of slits in a longitudinal direction, and a rubbing direction of the alignment film is a direction crossing longitudinal edges of each of the slits.
Abstract:
According to one embodiment, an electrostatic capacitance-type sensor-equipped display device includes a display panel with a display surface which displays an image. The sensor includes a plurality of detection electrodes disposed in a matrix, the detection electrodes being mutually electrically independently provided above the display surface and being configured to detect a variation in electrostatic capacitance, and a plurality of lead lines provided above the display surface, connected to the detection electrodes in a one-to-one correspondence, and formed of a metal.
Abstract:
According to an aspect, a liquid crystal display device with a touch sensor has a liquid crystal display function and a touch sensor function. The liquid crystal device includes a first substrate including a pixel electrode and a first electrode; a second substrate including a second electrode; and a liquid crystal layer provided between the first substrate and the second substrate. When the liquid crystal display function is activated, the first and second electrodes are supplied with common voltage. When the touch sensor function is activated, the first electrode is applied with a first signal, and a second signal is detected through the second electrode.
Abstract:
According to an aspect, a display device with a touch sensor has a display function and a touch sensor function. The display device includes: a panel unit that comprises a first substrate, a second substrate, and a display function layer between the first substrate and the second substrate; a first electrode on the first substrate; a second electrode on the second substrate; a third electrode on the second substrate; and a capacitor for the touch sensor function. The capacitor is formed between either of the first electrode and the second electrode and the third electrode, or between both the first electrode and the second electrode and the third electrode. The frame portion outside the display area comprises, on the first substrate side thereof, a peripheral circuit, and the second electrode is provided in a position more distant upward from the peripheral circuit than the first electrode.
Abstract:
When an ideal value of a width of each of a plurality of detecting electrodes (input-position detecting electrodes) in an X direction provided in an input device is defined as Wsmax [μm], an interval which is a center-to-center distance of adjacent detecting electrodes is defined as P [μm], and an effective inter-electrode distance represented by an inverse number of a value obtained by dividing a relative permittivity of an intermediate member by a thickness of the intermediate member is defined as D [μm], Wsmax is represented by a formula of: Wsmax=0.488×P-4.33×D-160. Also, a width of each of the plurality of detecting electrodes in the X direction falls within a range of not more than ±150 μm of a value of the Wsmax.
Abstract:
A display device includes a display region having a plurality of pixels, a driver IC provided in a frame region on an outer side of the display region and configured to drive the pixels, a first power source wiring line and a second power source wiring line each electrically coupled to the driver IC, and a first electrode that is arranged so as to face the first power source wiring line and the second power source wiring line via a first insulating layer, and is electrically coupled to the first power source wiring line.
Abstract:
According to an aspect, a display device with a touch detection function includes: a substrate; a drive electrode that extends in a first direction; and a plurality of touch detection electrodes that are metal wirings extending in a second direction different from the first direction. The metal wirings are arranged with a predetermined pitch so as to make capacitive coupling with the drive electrode.
Abstract:
A sensor-equipped display device is provided and includes a display panel and a detection electrode. The panel includes a display area in which pixels are arranged with a first pixel pitch in a first direction and a second pixel pitch in a second direction. The electrode includes an pattern having line fragments. The pattern has connection points at which ends of the fragments are connected to each other, and at least part of the connection points is arranged linearly such that an arrangement gaps thereof in the first and second direction is set to a first and second connection point pitch.
Abstract:
A first substrate including a first surface and a second surface on an opposite side of the first surface, the first surface being a detection surface for detecting unevenness of an object coming is contact or close, a second substrate facing the other surface of the first substrate, and a sensor unit provided between the first substrate and the second substrate, and which detects the unevenness of a finger coming in contact with or close to the detection surface.