Abstract:
Systems, devices, and methods for imaging a sinus in a patient involving a through sinus are presented. In one instance, a system includes a radiopaque wound filler for disposing into the through sinus. The system further includes a radiopaque solution for deploying into the sinus, and a radiopaque solution unit having a radiopaque solution reservoir and a positive pressure source. Other systems, devices, and methods are presented.
Abstract:
Systems and methods for delivery of fluid to a wound therapy dressing. In exemplary embodiments, a pressure sensor measures the pressure at the wound therapy dressing and restricts fluid flow to the wound therapy dressing when a predetermined pressure is achieve.
Abstract:
A system for treating a tissue site includes a reduced-pressure source to apply reduced pressure, a manifold in fluid communication with the pressure source to provide reduced pressure to the tissue site, and a drape for adhering to the tissue site to cover the tissue site and the manifold. The drape includes an adhesive layer for sealing the drape to the tissue site to create a sealed space having the manifold therein, and a non-adhesive layer formed from a portion of the adhesive layer. A method for manufacturing a medical drape includes providing a sheet of adhesive material and treating a side of the sheet of adhesive material to form a non-adhesive layer and an adhesive layer. The method laminates a release liner adjacent the adhesive layer.
Abstract:
A negative pressure wound therapy system includes a wound dressing, at least one pump fluidly coupled to the fluid interface, a pressure sensor fluidly coupled to the wound dressing, a control housing, and an electrical coupler. The wound dressing includes a sealing layer, an absorbent layer adjacent to the sealing layer, and a fluid interface attached to at least one of the sealing layer or the absorbent layer. The at least one pump is configured to apply negative pressure to the fluid interface to draw fluid from the wound dressing via the fluid interface. The pressure sensor is configured to detect a fluid pressure of the wound dressing. The control housing is remote from the wound dressing. The electrical coupler is configured to removably connect the control housing to the at least one pump.
Abstract:
Dressings for use in negative pressure therapy and methods of making the dressings are provided herein. The dressings may comprise at least two layers in a stacked configuration. The first layer may comprise a manifold layer and the second layer may comprise a silicone gel layer. The second layer may have perforations to form fluid restrictions that can open and close when used in negative pressure therapy. The perforated second layer may be formed by a first and a second curing step.
Abstract:
A wound therapy system includes a dressing sealable over a wound, a conduit comprising a first inner diameter, coupled to the dressing, and fluidly communicable with the wound space, and a canister fluidly communicable with the conduit. A therapy unit is coupled to the canister and includes a pump, a sensor configured to measure a pressure, a valve controllable between an open position and a closed position, and a control circuit. The control circuit is configured to control the pneumatic pump to remove air to establish a negative pressure, control the valve to repeatedly alternate between the open closed positions to allow a controlled rate of airflow through the valve, receive measurements of the pressure from the sensor, and determine a volume of the wound space based on the pressure measurements. A portion of the conduit comprises a second inner diameter that is less than the first inner diameter.
Abstract:
In some illustrative examples, a bridge suitable for treating a tissue site may include a bridge sealing member and one or more bridge wicking layers. The bridge sealing member may extend along a length of the bridge, and may define an internal passageway in fluid communication between a receiving end of the bridge and a transmitting end of the bridge. The one or more bridge wicking layers may be disposed within the internal passageway of the bridge sealing member. Other apparatus, systems, and methods are disclosed.
Abstract:
This disclosure describes devices, systems, and methods related to oxygenated hemoglobin, the generation thereof, and the use thereof. An exemplary oxygenated hemoglobin therapy system includes an oxygen source configured to provide oxygen and a hemoglobin source configured to provide topical hemoglobin. The therapy system may also include a mixer which has a first inlet, a second inlet, and an outlet. The mixer is configured to mix the oxygen and the topical hemoglobin to form a mixture and to provide the mixture to a dressing via the outlet. The therapy system may further include the dressing. The oxygenated hemoglobin therapy systems described herein are suitable for use in medical devices, such as bandages, drapes, dressings, and wound closures.
Abstract:
This disclosure describes devices, systems, and methods related to therapy devices including pumps that are operable in multiple operating modes. An exemplary wound therapy device includes a pump configured to be worn by a user and a controller coupled to the pump and configured to transition the pump from operating in a first operating mode to operating in a second operating mode responsive to a pressure of the wound therapy device satisfying a first pressure threshold. The first operating mode is associated with a first drive voltage that is different from a second drive voltage associated with the second operating mode.
Abstract:
A customizable wound treatment system for treating multiple zones of a wound includes a dressing configured for use with a first zone and a second zone of a wound that includes a first foam layer placed over the first zone, a second foam layer placed over the second zone, a first drape layer disposed over the first foam layer and beneath the second foam layer, and a second drape layer disposed over the second foam layer. The customizable wound treatment system includes a negative pressure source pneumatically coupled to the first foam layer and the second foam layer and operable to create a negative pressure at the first zone and the second zone and a fluid instillation pump fluidly coupled to the first foam layer and configured to instill a treatment fluid to the first zone.