Abstract:
Methods, devices, and computer program products for collision management of wireless devices in a peer-to-peer network are described herein. In one aspect, a method of communicating via a wireless medium by a wireless communications apparatus within a network is provided. The method includes determining first and second contention windows. The first contention window begins earlier than the second contention window. The method further includes beginning a first carrier sense multiple access (CSMA) countdown at the start of the first contention window. The method further includes beginning a second CSMA countdown when the first CSMA countdown does not end before the start of the second contention window. The method further includes transmitting the prepared frame at a time of the first CSMA countdown ending or the second CSMA countdown ending, whichever is earlier.
Abstract:
In one embodiment, a wireless access point (AP) receives messages from a wireless wide area network (WWAN) device, wherein these messages identify parameters of future WWAN frames. Each message identifies a starting time, an operating band, an upload/download sub-frame configuration, and a special sub-frame pattern of a WWAN frame. The AP uses the parameters defined by each received message to determine whether to transmit a beacon frame at a scheduled target beacon transmission time (TBTT), or delay the transmission of the beacon frame to a delayed TBTT. The AP will not delay the scheduled TBTT if the parameters defined by the received message indicate there are no co-existence problems. However, the AP will delay a transmission from the scheduled TBTT if this scheduled TBTT coincides with a downlink sub-frame of the WWAN frame, and the WWAN frame has an operating band subject to interference from the intended transmission.
Abstract:
Systems and methods for monitoring the number of neighboring wireless devices in a wireless network are described herein. In one aspect, the method includes receiving a message from one of the neighboring wireless devices having an identifier associated with the neighboring wireless device and adding the identifier into a Bloom filter. The method may further include estimating the number of distinct strings that have been added into the Bloom filter based on the number of zeros in the Bloom filter, the number of distinct strings representing an estimate of the number of neighboring wireless devices in the wireless network.
Abstract:
This disclosure provides methods, components, devices and systems for ranging measurement procedures between two wireless devices that communicate in wide bandwidth networks. Some aspects more specifically relate to null data packet (NDP) transmissions via a 320 megahertz (MHz) bandwidth. In some examples, a first wireless device and a second wireless device may participate in a ranging measurement procedure and may exchange one or more NDPs to facilitate distance measurements and one or both of the first wireless device and the second wireless device may indicate that an associated protocol data unit (PDU) is a 320 MHz ranging NDP (e.g., an NDP of a ranging variant associated with a bandwidth of 320 MHz) via one or more bits of the preamble of the PDU. The one or more bits may be included in a universal signal (U-SIG) field of the preamble of the PDU.
Abstract:
This disclosure provides systems, methods, apparatus, including computer programs encoded on computer storage media that support station performance enhancement with multi-link operations. An example method may include determining at least one network metric related to at least one link between a station (STA) and access points (APs) and determining at least one connection parameter related to at least one application operating on the STA. The method may include selecting a mode of multi-link operations based at least in part on the network metric and the connection parameter, wherein the mode of multi-link operations comprises one or more of: a multi-link mode in which the STA operates over a first link and a second link at a same time or a single-link mode in which the STA operates over one of the first or second links and communicating with the one or more APs according to the selected mode.
Abstract:
This disclosure provides methods, devices and systems for generating a secure long training field (LTF). In some implementations, the secure LTF may include a randomized bit sequence that is difficult, if not impossible, to replicate by any device other than the transmitting device and the intended receiving device. For example, the transmitting device may use a block cipher or stream cipher to generate a pseudorandom bit sequence and may select a subset of bits of the pseudorandom bit sequence to be mapped to a sequence of modulation symbols representing an LTF symbol of the secure LTF. More specifically, each of the modulation symbols is mapped to a respective one of a number of subcarriers spanning a bandwidth of the secure LTF. The transmitting device may further transmit a physical layer convergence protocol (PLCP) protocol data unit (PPDU) that includes the secure LTF to the receiving device.
Abstract:
Methods, systems, and devices for wireless communications are described. A station (STA) may receive a null data packet (NDP) on a plurality of subcarriers, and the STA may generate a channel state information (CSI) matrix for each subcarrier of the plurality of subcarriers. After generating a CSI matrix for a subcarrier, such as at least one subcarrier, the STA may scale each value in the CSI matrix using a power-of-two value to minimize complexity. Specifically, instead of scaling each value in the CSI matrix to a value between zero and one using divisions (for example, which may be computationally expensive), the STA may use shifting to scale each value in the CSI matrix. The STA may then quantize the scaled values in the CSI matrix for reporting, and the STA may transmit the quantized, scaled values in the CSI matrix in a CSI report.
Abstract:
This disclosure provides systems, devices, apparatus and methods, including computer programs encoded on storage media, for high efficiency (HE) beacons. HE supported access points (APs) and stations (STAs) may operate on resource deployments used for Wi-Fi technology and without support for legacy devices, also referred to as a greenfield deployment. An AP may identify updated capability information and transmit a HE physical layer convergence protocol (PLCP) protocol data unit (PPDU) including a beacon frame. A STA may receive, from the AP, the HE or EHT PPDU and identify an indication of change to a content or format of the beacon frame relative to a reference beacon frame. Based on the identified indication, the STA may then determine an updated content or format for the beacon frame and process the beacon frame or skip processing for one or more portions of the beacon frame.
Abstract:
A method of communication includes generating a control message at a particular device. The control message indicates availability of data to be sent by the particular device. The data includes first data corresponding to a first access category. The method also includes, subsequent to determining that transmission of the control message is to be delayed, determining a first delay based on the first access category. The method further includes sending the control message from the particular device upon expiration of a delay period. The delay period is based on the first delay.
Abstract:
Methods and apparatus for wireless communication in a peer-to-peer network are described herein. In one aspect, a method of wireless communication apparatus is provided. The method includes transmitting during a discovery window, by a first device, a first service discovery frame (SDF) or other action frame to a second device, the first SDF or other action frame comprising ranging information for performing a ranging protocol. The method further includes performing the ranging protocol, by the first device, in accordance with the ranging information.