Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for providing broadcast information on supported and non-supported slices using communications systems operating according to new radio (NR) technologies. For example, a method for wireless communication by a user equipment (UE) may generally include receiving signaling of at least one of: a first list of network slices indicated as available in a first cell or a second list of network slices indicated as unavailable in the first cell, and performing at least one of cell reselection or cell selection taking into account the network slices listed in the at least one of the first list or the second list.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for caching content at a network edge and providing the cached content to requesting UEs. An example method generally includes receiving, from a first UE, a request for content from a remote source, retrieving the content from the remote source and providing the content to the first UE, storing at least a portion of the content in a local cache at the base station, receiving a request for the content from at least a second UE, and retrieving the content from the local cache and providing the content to the at least the second UE.
Abstract:
The apparatus for wireless communication includes a processing system. The processing system is configured to establish a first radio link with a master base station, establish a second radio link with a first cell associated with a secondary base station, wherein the second radio link comprises a SRB, and receiving a RRC connection reconfiguration signal from the second radio link SRB to establish the second radio link with a second cell.
Abstract:
Certain aspects of the present disclosure relate to techniques for performing handover from a source base station to a target base station. According to one aspect, a method generally includes receiving a handover request from a source base station for handover of communication of a user equipment from the source base station to the target base station, generating a scheduling uplink grant for the user equipment to transmit a handover complete message based on receiving the handover request, and communicating the grant to the user equipment.
Abstract:
Communication using a radio access network (RAN) including a primary cell for license spectrum access and a secondary cell for unlicensed spectrum access may be improved to provide optimal performance while considering characteristics of the primary cell and the secondary cell. The apparatus may be a core network entity. The core network entity is connected to a RAN including a primary cell utilizing a licensed spectrum and a secondary cell utilizing an unlicensed spectrum. The core network entity determines an authorization for data traffic to be offloaded to the secondary cell based on data traffic characteristics. The core network transmits an indication of the authorization to the RAN.
Abstract:
Certain aspects relate to methods and apparatus for wireless communications, comprising determining to use a reduced paging cycle to page a user equipment (UE) of a first type that supports the reduced paging cycle, the reduced paging cycle having a shorter period relative to a paging cycle used with UEs of a second type which do not support the reduced paging cycle, and paging the UE of the first type in accordance with the reduced paging cycle. Certain aspects relate to methods and apparatus for conveying system information by a base station, comprising broadcasting a first system information common to each cell of a group of cells in an area and broadcasting a second system information that can vary between cells in the group of cells, wherein the second system information is broadcast more frequently than the first system information.
Abstract:
Techniques for handover procedure management are described herein. An example method may include monitoring, at a target base station, reference signal information associated with a UE based on a reference signal configuration of the UE received by the target base station from a source base station. Additionally, the example method may include estimating, at the target base station, timing information for the UE based on the reference signal information. Further, the example method may include transmitting, by the target base station, the timing information to the source base station, where the source base station provides the timing information to the UE for handover to the target base station.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus serves data to a UE or receives data from the UE via a first communication link that uses a first RAT, transmits a configuration message to the UE indicating that data will be served or received via a second communication link that uses a second RAT, and initiates a configuration procedure to switch service or reception of data from the first communication link that uses the first RAT to the second communication link that uses the second RAT.
Abstract:
Methods and apparatus for switching bearers between radio access technologies (RATs) are described. According to aspects of the present disclosure, the uplink part of a bearer may be served by one RAT, while the downlink part of the bearer is served by another RAT. A part of a bearer may be served by more than one RAT. Methods and apparatus for communicating via bearer with parts served by differing RATs are also described.
Abstract:
Aspects relate to an allocation of periodic resources where use of the periodic resources is conditional. In some examples, a user equipment (UE) receives a periodic resource allocation along with an indication of a condition for using the periodic resources. For example, the UE may be allowed to transmit on at least one first resource of the periodic resources if the condition is true. Similarly, a base station (BS) may monitor for a transmission by the UE on the at least one first resource if the condition is true.