Abstract:
In a power factor corrector including a PWM switch to switch a line current generated from a line voltage to charge a boost capacitor to thereby generate an output voltage, a piecewise on-time modulation apparatus and method comprise comparing a line voltage dependent voltage with an output voltage dependent voltage to generate a comparison signal to determine the on-time of the PWM switch. When the line voltage is lower than a threshold, the on-time of the PWM switch varies with the line voltage, and when the line voltage is higher than the threshold, the on-time of the PWM switch is constant.
Abstract:
In an apparatus for over-voltage and over-current protection for a step-up current-mode converter including an inductor connected via a phase node to a switch that is switched by a control signal to convert an input voltage to an output voltage, a controller has a multiplexed pin, and a resistor and a capacitor are connected in parallel between the multiplexed pin and the phase node. In an over-voltage protection mode, the controller senses the voltage on the multiplexed pin, and in an over-current protection mode, the controller supplies a current to flow through the resistor and senses the voltage on the multiplexed pin.
Abstract:
In a gamma voltage generator and gamma voltage generating method that can tune the gamma voltages individually, several gamma currents of a same magnitude are generated for each to flow through a variable resistive element to generate a variable common voltage and several variable voltages, from which a common gamma voltage and several first gamma voltages are generated. By use of the symmetric property of the gamma curve corresponding to those gamma voltages to be generated, several voltages are generated by mapping the first gamma voltages with the common gamma voltage as the center axis, and from which several second gamma voltages are derived. The common gamma voltage and the first and second gamma voltages are provided for those gamma voltages corresponding to the gamma curve.
Abstract:
An offset current independent sense circuit is switchable between a store state and a sense state. In the store state, the sense circuit stores an offset current to a capacitor, and the influence of the offset current is eliminated by a transistor to regenerate the offset current based on a signal provided by the capacitor in the sense state.
Abstract:
A dimming method for LED driving circuit is proposed. By temporary switching a pin that is originally used for the input/output of other electric signals to a high impedance node, the dimming control signal may be inputted to dim LEDs. The dimming method comprises the steps of: floating the pin every a period of time to pull the pin's voltage being equal to the dimming control signal; detecting the pin's voltage; and retrieving the dimming control signal in accordance with the detected pin's voltage and thereafter dimming the LEDs.
Abstract:
An overshoot suppression circuit comprises a switch for coupling to an output of a voltage regulation module and a voltage detector for detecting an output voltage at the output. When the load to the voltage regulation module changes from heavy to light to result in the output voltage higher than a threshold, the voltage detector turns on the switch to release energy from the output, and thereby the output voltage is suppressed to produce overshoot to damage the load coupled to the output.
Abstract:
In a voltage regulator including an inductor current flowing through a sense element with a first temperature coefficient, and a current sense circuit for generating a current sense signal related to the first temperature coefficient by sensing the inductor current from the sense element, a temperature compensation device and method determines a second temperature coefficient according to the first temperature coefficient and temperature variation, and produces a compensation signal with the second temperature coefficient to compensate variations in the current sense signal caused by the first temperature coefficient.
Abstract:
A DC-to-DC converter comprises a sense circuit to sense the output voltage of the converter to generate a feedback signal, a transconductive amplifier to amplify a difference between the feedback signal and a threshold signal to generate a first current and to generate a second current in response to a load transient, a charging circuit connected with the first current to generate a charging voltage, a driver to compare the charging voltage with two reference signals to generate a pair of low-side and high-side driving signals, and a fast response circuit to compare a load transient signal corresponding to the second current with a third reference signal to generate a bypass signal to drive the output stage of the converter in the load transient.
Abstract:
A two-step DC-to-DC converter comprises a first converter stage for converting a first voltage to a second voltage, and a second converter stage for converting the second voltage to an output voltage. The first converter stage uses a MOSFET or normally-off JFET to serve as a high-side switch, and the second converter stage comprises a multi-phase modulator using a normally-on JFET to serve as a high-side switch, thereby improving the efficiency of the two-step DC-to-DC converter.
Abstract:
For a PWM controller chip in a voltage converter to switch a pair of high side and low side switches connected with a phase node therebetween, a circuit comprises a sense resistor connected between a multi-function pin on the PWM controller chip and the phase node, and an enable arrangement, a power sensing arrangement, and an over-current protection arrangement to detect the voltage on the multi-function pin for accomplishing enable function, power sensing, and over-current protection, respectively.