Abstract:
The device has a base mounting a support which constantly contacts a normal section profile of a part, being measured, the part having the shape of a body of revolution. The support is essentially a system of self-adjusting balance beams arranged in steps. The axles of oscillation of the beams of a first step are secured to the base, while the axles of oscillation in subsequent steps are secured to the respective ends of beams of a preceding step. The beams of a last step contact the profile being measured. The central angles under which the balance beams are mounted are chosen on the basis of the condition of maximal stabilization of the position of the centre of the profile of the part relative to the base in the direction of disposition of a sensing element of a linear-movement dial indicator secured to the base.
Abstract:
A ball joint or king pin tester for automotive vehicles having means to oscillate the ball joint or king pin so as to displace the wearing parts thereof with respect to one another, and having means to measure the amount of such displacement so that appropriate maintenance may be provided if necessary. The device also comprises a pressure roller for testing tire out-ofroundness.
Abstract:
According to one aspect of this disclosure a comparative measurement gauge is described. The gauge includes a portable U-shaped body having two arms connected by an intermediate portion, wherein at least one of the arms engages a part to be measured. At least one rod is disposed in a space defined between the two arms. A slide is disposed on the rod in the space and one portion of the slide is attached to a measurement probe. A measurement indicator extends from one of the arms. The measurement indicator includes a tip that is adjacent to the slide. As the slide moves along the rod to measure the part the measurement indicator provides a measurement value.
Abstract:
A surface property measuring apparatus includes a control unit, configured to control operations of a roughness measuring instrument and a relative moving mechanism, including: a measuring force command module configured to output a measuring command; and a measuring force control module configured to control the direction and magnitude of the measuring force, wherein the measuring force control module instructs a measuring force application unit of the roughness measuring instrument to generate therein the measuring force whose magnitude and direction are designated by the measuring force command when a displacement speed of a measuring arm is equal to or slower than a predetermined threshold, and the measuring force control module instructs the measuring force application unit to generate therein a force in a direction in which the distal end of the measuring arm is raised upwards when the displacement speed of the measuring arm exceeds the predetermined threshold.
Abstract:
A shaft precision automatic measurement device for motors is provided that is able to automatically measure shaft precision of a motor. A shaft precision automatic measurement device (1) for a motor (9) includes: a gripping mechanism (3) that grips the shaft (7); a first contact-type displacement sensor (41) that is able to measure a position of the flange face (82) by contacting to follow the flange face (82); a second contact-type displacement sensor (42) that is able to measure a position of the fitting face (81) by contacting to follow the fitting face (81); a rotary mechanism (5) that causes the device main body (2) to rotate in a state gripping the shaft (7) by the gripping mechanism (3) and executing measurement by way of the respective displacement sensors; a displacement data acquisition part (63) that acquires displacement data of the flange face (82) and displacement data of the fitting face (81); and a measurement part (64) that measures center runout and face deflection of the shaft (7) based on the respective displacement data acquired by the displacement data acquisition part (63).
Abstract:
The present disclosure relates to a machine tool, such as a grinding machine, and to a method for measuring a workpiece in a machine tool. The machine tool may comprise a workpiece mount (14), a tool unit (28), a measuring device (48) and a control device (56) that is connectable to the measuring device (48) and the tool unit (28), wherein the measuring device (48) is received at the tool unit (28) and comprises at least one toggle measurement head (66; 68), wherein the at least one toggle measurement head (66; 68) is received at a support piece (80) that provides a plurality of defined predetermined locations for the at least one toggle measurement head (66; 68), and wherein the control device (56) is arranged to detect signals that are triggered by the at least one toggle measurement head (66; 68) when touching a workpiece (96), and to determine on the basis of an actual location of the tool unit (28) an actual position of the at least one toggle measurement head (66; 68).
Abstract:
A system (12) for measuring geometry of a non-circular twisted strand (10) during a stranding process, the system comprising: a pulley (14), for being rotated by linear displacement of the strand (10) induced by the stranding process; a first encoder (16), for measuring the rotation of the pulley (14), thereby measuring the linear displacement of the strand (10); at least one embracing element (36), for embracing a vertex (38) or another zone (48) of the strand (10), for being rotated perpendicular (60) to the longitudinal position (58) of the strand (10), the embracing obtained by the non-circular character of the strand (10) rather than by friction, thereby allowing sliding the at least one embracing element (36) therealong; and a second encoder (20), for measuring the rotation of the at least one embracing element (36), thereby measuring the twist character of the strand (10).