Abstract:
A photomultiplier for converting an incident weak light into multiplied electrons to thereby output an electrical signal corresponding to the intensity of the incidence light. The photomultiplier comprises a photocathode for emitting primary electrons; plural dynodes for emitting secondary electrons in response to incident of the primary electrons and multiplying first secondary electrons passing between the dynodes; and shield means for preventing second secondary electrons emitted from a first dynode of the dynodes toward the photocathode from returning to the dynodes, thereby to reduce the generation of a residual pulse currents caused by the second secondary electrons and to accurately detect a main pulse current caused by the first secondary electrons.
Abstract:
An x-ray image intensifier having a tube bulb and an output window being mounted in a metal frame. The frame is inserted into the tube bulb and attached to the tube bulb in a region of the output window characterized by the output window being a glass window having a luminophor layer applied thereto, the output window being connected to the frame by only a single metal solder connection of soft solder so that the pane having the luminophor layer can be soldered to the frame without damaging the luminophor layer. Preferably, a peripheral edge of the window pane is free of the luminophor layer, and this peripheral edge has at least one adhesive layer deposited at the location for the solder connection.
Abstract:
An improved electron discharge device comprises an evacuated envelope having at least one alumina ceramic insulator member. Within the device is a source of electrons, and an electron multiplier assembly including an anode. A high resistance material is diffused into the ceramic insulator to reduce luminescence within the insulator. The method of diffusion includes the steps of applying an opaque coating of a high resistance material to a surface of the ceramic insulator member and then firing the member in a reducing atmosphere at a temperature within the range of about 1500.degree. C. to 1550.degree. C. until the high resistance material diffuses into the surface of the member forming a diffusion region.
Abstract:
The image contrast in an image display tube having a channel plate electron multiplier (2) is improved by preventing secondary electrons emitted from the face of an input dynode (26) from straying to channels located at a relatively large distance from their origin. This is done by disposing a grid (24) at a short distance from the input dynode (26). If the grid (24) is held at a positive voltage relative to the input dynode (26), stray secondary electrons will be attracted toward the grid (24). Alternatively, if the grid (24) is held at a negative voltage relative to that of the input dynode (26), the secondary electrons will be induced to enter channels close to their origin.
Abstract:
A glass faceplate having a central area of required useful diameter surrounded by a narrow ring of opaque glass and an outer glass mounting flange. Light entering the flange or ring is prevented from reaching the central area as stray light or glare in the system and spurious reflections at the interface of the ring and central area are minimized by a refractive index match of the two innermost glasses.
Abstract:
An illustrative embodiment of the invention shown a method and apparatus for joining a crystalline magnesium fluoride faceplate to the envelope of a photomultiplier tube. The bialkali photocathode deposited on the faceplate is protected from the chemically incompatible silver chloride sealing compound by a preglazed glass frit that acts as a barrier between the photocathode and the seal.