Abstract:
An aircraft (11) with at least an inflatable device (41) installed in a cavity (21) in its external surface which is equipped with a door (25) for opening/closing said cavity (21) is provided. The inflatable device (41), comprising a cushion (45) and a gas generator is configured for filling the cavity (21) with the cushion (45) when it is inflated with the gas supplied by said gas generator, without protruding from the cavity (21) for reducing the downstream air flow disturbances generated by said cavity (21) when the door (25) is open. The inflatable device (41) includes control means for inflating the cushion (45) in predetermined circumstances, being the door (25) open. The invention is particularly applicable to the cavities of the Main Landing Gear (31) for avoiding power losses to a Ram Air Turbine (51) placed behind it.
Abstract:
A method of manufacturing composite material parts is provided. The method includes tape laying by means of fiber placement on the outer surface of a tape laying tool, such that at least one laminate with a geometry different from the end geometry of the part is obtained and forming the at least one laminate obtained in tape laying by means of a forming tool, such that the laminate acquires the end geometry of the part. The method also includes curing the at least one part.
Abstract:
A frame of a fuselage section of an aircraft that receives external loads, such as the rear section that receives the loads of the tail planes, comprising a first sector configured specifically to withstand these external loads and a second sector along the remaining perimeter of the fuselage, said first sector comprising the following structural elements a) a foot piece to be joined to the fuselage skin; b) a head piece; c) a web comprising one or more fitting-pieces for receiving said external loads and a plurality of X-shaped pieces joined by its ends to said foot piece and said head piece; and d) two connecting pieces of the ends of said foot piece and said head piece with the second sector of the frame.
Abstract:
An aircraft air conditioning system comprises a process air line configured to supply compressed process air provided by a process air source to an air conditioning unit of the aircraft air conditioning system and a trim air line branching off from the process air line upstream of the air conditioning unit and being configured such that trim air flows through the trim air line, the trim air having been branched off from the compressed process air flowing through the process air line. A compressor is arranged in the trim air line and is configured to compress the trim air flowing through the trim air line. A turbine of the aircraft air conditioning system is configured to drive the compressor. A cabin exhaust air line is configured to supply cabin exhaust air discharged from an aircraft cabin to the turbine for driving the turbine.
Abstract:
A method for obtaining a composite piece of n plies, at least one ply having a fiber volume greater than 58% in weight, the method comprising the steps of laying uncured prepreg plies and performing ultrasound compaction over each laid uncured laminate ply, wherein at least one of the uncured laminate plies has a fiber volume greater than 58% in weight. Finally, the composite laminate is cured. The step of performing ultrasound compaction comprises applying an ultrasonic compactor over each laid laminate ply.
Abstract:
An Auxiliary Power Unit (“APU”) for an aircraft with reduced weight, but which at the same time meets all fire-related airworthiness standards. The APU comprises a metallic housing having mounts for attaching the housing to an external structure. The APU further comprises at least one temperature sensor suitable for detecting temperature under fire conditions. The temperature sensor is coupled with the mounts for sensing temperature at the housing.
Abstract:
A manufacturing method is disclosed for manufacturing of a composite stiffening element, including: arranging composite laminates partially between caul plates and mold halves, and partially between a movable upper sandwich plate and a movable lower sandwich plate, moving the upper and lower sandwich plates together and moving the assembly formed by the first caul plate and the first mold half and the assembly formed by the second caul plate and the second mold half, and joining and co-curing the composite laminates to make up the composite stiffening element. A composite stiffening element is also disclosed.
Abstract:
A method of manufacturing T-shaped stringers made of composite material, including a second shaping step for shaping laminates into L-shaped preforms, which includes providing a set of tools formed by a fixed tool comprising a lower portion and an upper portion, and a moveable tool comprising a lower element and an upper element. It also includes the segment of the laminate intended for the foot of the preform being located between the lower portion and the upper portion of the fixed tool, and the segment of the laminate intended for the web of the preform being located between the lower element and the upper element of the moveable tool. It further includes vertically moving the moveable tool to progressively bend the web of the preform supporting it on a vertical wall of the fixed tool. The end of its web adopts a rounded shape.
Abstract:
The manufacturing method object of the invention comprises the following stages: A) stacking strips of prepreg material on a laminating tool (14), so that an angled laminated part (2) is obtained comprising a central section (2a) contained in a first plane (12), at least one side section (2b) contained in a second plane (13), and at least one bending axis (5) between the central section (2a) and the at least one side section (2b), so that, the first plane and the second plane form an angle α; B) forming of the angled laminated part (2) comprising bending along the bending axis (5) the, at least, one side section with respect to the central section (2a), obtaining a formed part (6); C) curing, of the formed part (6).
Abstract:
A hybrid tool for curing composite structures for aircrafts, such as stringers, torsion boxes, skin panels, wing surfaces, horizontal tail or vertical stabilizers, etc. The hybrid tool comprises a metallic portion and an elastic portion arranged on a surface of the metallic portion. The elastic portion and the metallic portion are permanently joined to each other so that the metallic portion and the elastic portion together define a surface having a shape which copies at least part of a surface of a piece of composite material to be cured. The tool is capable of satisfactorily curing pieces of composite material which have a minimum thickness and/or a very aggressive change of thickness.