IRON PHOSPHATES: NEGATIVE ELECTRODE MATERIALS FOR AQUEOUS RECHARGEABLE SODIUM ION ENERGY STORAGE DEVICES
    152.
    发明申请
    IRON PHOSPHATES: NEGATIVE ELECTRODE MATERIALS FOR AQUEOUS RECHARGEABLE SODIUM ION ENERGY STORAGE DEVICES 审中-公开
    铁磷酸盐:用于水质可充电钠离子能量储存装置的负极电极材料

    公开(公告)号:US20130244100A1

    公开(公告)日:2013-09-19

    申请号:US13827768

    申请日:2013-03-14

    Abstract: Various embodiments of the present invention relate to electrode materials based on iron phosphates that can be used as the negative electrode materials for aqueous sodium ion batteries and electrochemical capacitors. At least one embodiment includes a negative electrode material for an aqueous sodium ion based energy storage device. The negative electrode material with a non-olivine crystal structure includes at least one phosphate selected from iron hydroxyl phosphate, Na3Fe3(PO4)4, Na3Fe(PO4)2, iron phosphate hydrate, ammonium iron phosphate hydrate, carbon-coated or carbon-mixed sodium iron phosphate. At least one embodiment includes an energy storage device that includes such a negative electrode material.

    Abstract translation: 本发明的各种实施方案涉及可用作钠盐水溶液和电化学电容器的负极材料的基于磷酸铁的电极材料。 至少一个实施方案包括用于钠盐水溶液的能量储存装置的负极材料。 具有非橄榄石晶体结构的负极材料包括选自磷酸铁,Na 3 Fe 3(PO 4)4,Na 3 Fe(PO 4)2,磷酸铁水合物,磷酸铁铵水合物,碳涂覆或碳混合物中的至少一种磷酸盐 磷酸铁钠 至少一个实施例包括包括这种负极材料的能量存储装置。

    OPTICAL SCANNING AND IMAGING SYSTEMS BASED ON DUAL PULSED LASER SYSTEMS
    153.
    发明申请
    OPTICAL SCANNING AND IMAGING SYSTEMS BASED ON DUAL PULSED LASER SYSTEMS 失效
    基于双脉冲激光系统的光学扫描和成像系统

    公开(公告)号:US20130148128A1

    公开(公告)日:2013-06-13

    申请号:US13754491

    申请日:2013-01-30

    Abstract: The invention relates to scanning pulsed laser systems for optical imaging. Coherent dual scanning laser systems (CDSL) are disclosed and some applications thereof. Various alternatives for implementation are illustrated, including highly integrated configurations. In at least one embodiment a coherent dual scanning laser system (CDSL) includes two passively modelocked fiber oscillators. The oscillators are configured to operate at slightly different repetition rates, such that a difference δfr in repetition rates is small compared to the values fr1 and fr2 of the repetition rates of the oscillators. The CDSL system also includes a non-linear frequency conversion section optically connected to each oscillator. The section includes a non-linear optical element generating a frequency converted spectral output having a spectral bandwidth and a frequency comb comprising harmonics of the oscillator repetition rates. A CDSL may be arranged in an imaging system for one or more of optical imaging, microscopy, micro-spectroscopy and/or THz imaging.

    Abstract translation: 本发明涉及用于光学成像的扫描脉冲激光系统。 公开了相干双扫描激光系统(CDSL)及其一些应用。 示出了用于实现的各种替代方案,包括高度集成的配置。 在至少一个实施例中,相干双扫描激光系统(CDSL)包括两个被动锁模光纤振荡器。 振荡器被配置为以稍微不同的重复频率进行操作,使得与振荡器的重复频率的值fr1和fr2相比,重复率中的差分差小。 CDSL系统还包括与每个振荡器光学连接的非线性频率转换部分。 该部分包括产生具有频谱带宽的频率转换频谱输出和包括振荡器重复频率的谐波的频率梳的非线性光学元件。 可以在成像系统中布置CDSL以用于光学成像,显微镜,微光谱和/或THz成像中的一种或多种。

    In-line, high energy fiber chirped pulse amplification system
    154.
    发明申请
    In-line, high energy fiber chirped pulse amplification system 有权
    在线高能纤维啁啾脉冲放大系统

    公开(公告)号:US20040263950A1

    公开(公告)日:2004-12-30

    申请号:US10608233

    申请日:2003-06-30

    Abstract: By writing non-linear chirp into fiber Bragg gratings, greater control over dispersion compensation in CPA systems is obtained, such that, for example, the dispersion profile of the fiber Bragg grating and a bulk compressor may be matched. An iterative method of writing the fiber grating can reduce the group delay ripple to very low levels; and adaptive control of the fiber grating dispersion profile can further reduce these levels, while in addition offering greater acceptable yield in the manufacture of such gratings. Fiber Bragg gratings may be designed so as to provide customized pulse shapes optimized for various end uses, such as micromachining, for example, and may also be used to counteract gain-narrowing in a downstream amplifier.

    Abstract translation: 通过将非线性啁啾写入光纤布拉格光栅,可以获得对CPA系统中的色散补偿的更大控制,使得例如光纤布拉格光栅和大容量压缩机的色散曲线可以匹配。 编写光纤光栅的迭代方法可以将组延迟纹波降低到非常低的水平; 并且光纤光栅色散轮廓的自适应控制可以进一步降低这些水平,同时在制造这种光栅时提供更大的可接受的产量。 可以设计光纤布拉格光栅,以便提供针对各种最终用途(例如微加工)优化的定制脉冲形状,并且还可以用于抵消下游放大器中的增益变窄。

    Precision light source
    157.
    发明授权

    公开(公告)号:US11881681B2

    公开(公告)日:2024-01-23

    申请号:US17113409

    申请日:2020-12-07

    Abstract: A pulse transformer for modifying the amplitude and phase of short optical pulses includes a pulse source and an adaptively controlled stretcher or compressor including at least one fiber Bragg grating (FBG) configured to receive pulses from the pulse source and having a first second-order dispersion parameter (D21). The pulse transformer further includes at least one optical amplifier configured to receive pulses from the FBG and a compressor configured to receive pulses from the at least one optical amplifier. The compressor has a second second-order dispersion parameter (−D22), an absolute value of the first second-order dispersion parameter (|D21|) and an absolute value of the second second-order dispersion parameter (|−D22|) that are substantially equal to one another to within 10%.

    Compact microresonator frequency comb

    公开(公告)号:US11409185B2

    公开(公告)日:2022-08-09

    申请号:US17225012

    申请日:2021-04-07

    Abstract: Systems and methods for precision control of microresonator (MR) based frequency combs can implement optimized MR actuators or MR modulators to control long-term locking of carrier envelope offset frequency, repetition rate, or resonance offset frequency of the MR. MR modulators can also be used for amplitude noise control. MR parameters can be locked to external reference frequencies such as a continuous wave laser or a microwave reference. MR parameters can be selected to reduce cross talk between the MR parameters, facilitating long-term locking. The MR can be locked to an external two wavelength delayed self-heterodyne interferometer for low noise microwave generation. An MR-based frequency comb can be tuned by a substantial fraction or more of the free spectral range (FSR) via a feedback control system. Scanning MR frequency combs can be applied to dead-zone free spectroscopy, multi-wavelength LIDAR, high precision optical clocks, or low phase noise microwave sources.

    ULTRA-LOW PHASE NOISE MILLIMETER-WAVE OSCILLATOR AND METHODS TO CHARACTERIZE SAME

    公开(公告)号:US20220221583A1

    公开(公告)日:2022-07-14

    申请号:US17224938

    申请日:2021-04-07

    Abstract: A tunable millimeter-wave signal oscillator includes two phase coherent optical oscillators, a fiber-ring cavity configured to generate two Stokes waves, and a photosensitive element converting the frequency difference of two optical oscillator into a millimeter-wave radiation. A chip-scale form factor millimeter-wave oscillator includes two continuous wave lasers, a plurality of micro-optical-resonators, an optical frequency division mechanism, two optical tunable bandpass filters, and a photosensitive element converting the pulse train of a frequency comb into a millimeter-wave radiation. A millimeter-wave phase noise analyzer includes an optical interferometer, two photosensitive elements, and a fundamental millimeter-wave frequency mixer. A millimeter-wave frequency counter includes an electro-optic optical frequency comb generator, a microwave voltage controlled oscillator, and an optoelectronic phase locked loop. A millimeter-wave electrical spectrum analyzer includes a millimeter-wave phase noise analyzer, a millimeter-wave amplitude detector, a millimeter-wave frequency counter, and a data processing unit.

Patent Agency Ranking