Abstract:
Various embodiments of optical fiber designs and fabrication processes for ultra small core fibers (USCF) are disclosed. In some embodiments, the USCF includes a core that is at least partially surrounded by a region comprising first features. The USCF further includes a second region at least partially surrounding the first region. The second region includes second features. In an embodiment, the first features are smaller than the second features, and the second features have a filling fraction greater than about 90 percent. The first features and/or the second features may include air holes. Embodiments of the USCF may provide dispersion tailoring. Embodiments of the USCF may be used with nonlinear optical devices configured to provide, for example, a frequency comb or a supercontinuum.
Abstract:
Various embodiments of the present invention relate to electrode materials based on iron phosphates that can be used as the negative electrode materials for aqueous sodium ion batteries and electrochemical capacitors. At least one embodiment includes a negative electrode material for an aqueous sodium ion based energy storage device. The negative electrode material with a non-olivine crystal structure includes at least one phosphate selected from iron hydroxyl phosphate, Na3Fe3(PO4)4, Na3Fe(PO4)2, iron phosphate hydrate, ammonium iron phosphate hydrate, carbon-coated or carbon-mixed sodium iron phosphate. At least one embodiment includes an energy storage device that includes such a negative electrode material.
Abstract:
The invention relates to scanning pulsed laser systems for optical imaging. Coherent dual scanning laser systems (CDSL) are disclosed and some applications thereof. Various alternatives for implementation are illustrated, including highly integrated configurations. In at least one embodiment a coherent dual scanning laser system (CDSL) includes two passively modelocked fiber oscillators. The oscillators are configured to operate at slightly different repetition rates, such that a difference δfr in repetition rates is small compared to the values fr1 and fr2 of the repetition rates of the oscillators. The CDSL system also includes a non-linear frequency conversion section optically connected to each oscillator. The section includes a non-linear optical element generating a frequency converted spectral output having a spectral bandwidth and a frequency comb comprising harmonics of the oscillator repetition rates. A CDSL may be arranged in an imaging system for one or more of optical imaging, microscopy, micro-spectroscopy and/or THz imaging.
Abstract:
By writing non-linear chirp into fiber Bragg gratings, greater control over dispersion compensation in CPA systems is obtained, such that, for example, the dispersion profile of the fiber Bragg grating and a bulk compressor may be matched. An iterative method of writing the fiber grating can reduce the group delay ripple to very low levels; and adaptive control of the fiber grating dispersion profile can further reduce these levels, while in addition offering greater acceptable yield in the manufacture of such gratings. Fiber Bragg gratings may be designed so as to provide customized pulse shapes optimized for various end uses, such as micromachining, for example, and may also be used to counteract gain-narrowing in a downstream amplifier.
Abstract:
An erbium fiber (or erbium-ytterbium) based chirped pulse amplification system is illustrated. The use of fiber amplifiers operating in the telecommunications window enables the implementation of telecommunications components and telecommunications compatible assembly procedures with superior mechanical stability.
Abstract:
System for converting relatively long pulses from rep-rate variable ultrafast optical sources to shorter, high-energy pulses suitable for sources in high-energy ultrafast lasers. Fibers with positive group velocity dispersion (GVD) and self phase modulation are advantageously employed with the optical sources. These systems take advantage of the need for higher pulse energies at lower repetition rates so that such sources can be cost effective.
Abstract:
A pulse transformer for modifying the amplitude and phase of short optical pulses includes a pulse source and an adaptively controlled stretcher or compressor including at least one fiber Bragg grating (FBG) configured to receive pulses from the pulse source and having a first second-order dispersion parameter (D21). The pulse transformer further includes at least one optical amplifier configured to receive pulses from the FBG and a compressor configured to receive pulses from the at least one optical amplifier. The compressor has a second second-order dispersion parameter (−D22), an absolute value of the first second-order dispersion parameter (|D21|) and an absolute value of the second second-order dispersion parameter (|−D22|) that are substantially equal to one another to within 10%.
Abstract:
A photonic millimeter-wave oscillator is based on a heterodyne beatnote of two continuous wave lasers and is configured to provide a narrow linewidth output when the frequency difference is disciplined with rotational spectroscopy of molecules using frequency modulation spectroscopy.
Abstract:
Systems and methods for precision control of microresonator (MR) based frequency combs can implement optimized MR actuators or MR modulators to control long-term locking of carrier envelope offset frequency, repetition rate, or resonance offset frequency of the MR. MR modulators can also be used for amplitude noise control. MR parameters can be locked to external reference frequencies such as a continuous wave laser or a microwave reference. MR parameters can be selected to reduce cross talk between the MR parameters, facilitating long-term locking. The MR can be locked to an external two wavelength delayed self-heterodyne interferometer for low noise microwave generation. An MR-based frequency comb can be tuned by a substantial fraction or more of the free spectral range (FSR) via a feedback control system. Scanning MR frequency combs can be applied to dead-zone free spectroscopy, multi-wavelength LIDAR, high precision optical clocks, or low phase noise microwave sources.
Abstract:
A tunable millimeter-wave signal oscillator includes two phase coherent optical oscillators, a fiber-ring cavity configured to generate two Stokes waves, and a photosensitive element converting the frequency difference of two optical oscillator into a millimeter-wave radiation. A chip-scale form factor millimeter-wave oscillator includes two continuous wave lasers, a plurality of micro-optical-resonators, an optical frequency division mechanism, two optical tunable bandpass filters, and a photosensitive element converting the pulse train of a frequency comb into a millimeter-wave radiation. A millimeter-wave phase noise analyzer includes an optical interferometer, two photosensitive elements, and a fundamental millimeter-wave frequency mixer. A millimeter-wave frequency counter includes an electro-optic optical frequency comb generator, a microwave voltage controlled oscillator, and an optoelectronic phase locked loop. A millimeter-wave electrical spectrum analyzer includes a millimeter-wave phase noise analyzer, a millimeter-wave amplitude detector, a millimeter-wave frequency counter, and a data processing unit.