摘要:
Examples of systems and methods for integrated photonic broadband microwave receivers and transceivers are disclosed based on integrated coherent dual optical frequency combs. In some cases, when the system is configured as a receiver, the microwave spectrum of the input signal can be sliced into several spectral segments for low-bandwidth detection and analysis. In some cases, when the system is configured as a transmitter, multiple radio frequency (RF) carriers can be generated, which can be coherently added or encoded independently for transmission of individual microwave bands. In some systems, the optics-related functionalities can be achieved via integrated optic technology, for example, based on silicon photonics, providing tremendous possibilities for mass-production with significantly reduced system footprint.
摘要:
Examples of compact control electronics for precision frequency combs are disclosed. Application of digital control architecture in conjunction with compact and configurable analog electronics provides precision control of phase locked loops with reduced or minimal latency, low residual phase noise, and/or high stability and accuracy, in a small form factor.
摘要:
The invention describes classes of robust fiber laser systems usable as pulse sources for Nd: or Yb: based regenerative amplifiers intended for industrial settings. The invention modifies adapts and incorporates several recent advances in FCPA systems to use as the input source for this new class of regenerative amplifier.
摘要:
Various embodiments include large cores fibers that can propagate few modes or a single mode while introducing loss to higher order modes. Some of these fibers are holey fibers that comprise cladding features such as air-holes. Additional embodiments described herein include holey rods. The rods and fibers may be used in many optical systems including optical amplification systems, lasers, short pulse generators, Q-switched lasers, etc. and may be used for example for micromachining.
摘要:
Various embodiments include large cores fibers that can propagate few modes or a single mode while introducing loss to higher order modes. Some of these fibers are holey fibers that comprise cladding features such as air-holes. Additional embodiments described herein include holey rods. The rods and fibers may be used in many optical systems including optical amplification systems, lasers, short pulse generators, Q-switched lasers, etc. and may be used for example for micromachining.
摘要:
The invention describes classes of robust fiber laser systems usable as pulse sources for Nd: or Yb: based regenerative amplifiers intended for industrial settings. The invention modifies adapts and incorporates several recent advances in FCPA systems to use as the input source for this new class of regenerative amplifier.
摘要:
The present invention relates to compact, low noise, ultra-short pulse sources based on fiber amplifiers, and various applications thereof. At least one implementation includes an optical amplification system having a fiber laser seed source producing seed pulses at a repetition rate corresponding to the fiber laser cavity round trip time. A nonlinear pulse transformer, comprising a fiber length greater than about 10 m, receives a seed pulse at its input and produces a spectrally broadened output pulse at its output, the output pulse having a spectral bandwidth which is more than 1.5 times a spectral bandwidth of a seed pulse. A fiber power amplifier receives and amplifies spectrally broadened output pulses. A pulse compressor is configured to temporally compress spectrally broadened pulses amplified by said power amplifier. Applications include micro-machining, ophthalmology, molecular desorption or ionization, mass-spectroscopy, and/or laser-based, biological tissue processing.
摘要:
Examples of robust self-starting passively mode locked fiber oscillators are described. In certain implementations, the oscillators are configured as Fabry-Perot cavities containing an optical loop mirror on one cavity end and a bulk mirror or saturable absorber on the other end. The loop mirror can be further configured with an adjustable line phase delay to optimize modelocking. All intra-cavity fiber(s) can be polarization maintaining. Dispersion compensation components such as, e.g., dispersion compensation fibers, bulk diffraction gratings or fiber Bragg gratings may be included. The oscillators may include a bandpass filter to obtain high pulse energies when operating in the similariton regime. The oscillator output can be amplified and used whenever high power short pulses are required. For example the oscillators can be configured as frequency comb sources or supercontinuum sources. In conjunction with repetition rate modulation, applications include dual scanning delay lines and trace gas detection.
摘要:
This disclosure relates to polarizing optical fibers and polarization maintaining optical fibers, including active and/or passive implementations. An embodiment includes a polarizing (PZ) optical fiber that includes stress applying parts (SAPs) disposed in a first cladding region, the SAPs comprising a material with a thermal expansion coefficient, αSAP. A core region is at least partially surrounded by cladding features and the SAPs. The core includes glass with a thermal expansion coefficient, αcore. The arrangement of the SAPs satisfies: Rsc=dSAP/Dsc, where Dsc is the SAP center to core center distance, and dSAP is the average SAP diameter, and dα=|αSAP−αcore|, and where Rsc and dα may be sufficiently large to induce stress birefringence into the core and to provide for polarized output. Active fibers in which a portion of the fiber is doped may be implemented for application in fiber lasers, fiber amplifiers, and/or optical pulse compressors.
摘要:
A laser utilizes a cavity design which allows the stable generation of high peak power pulses from mode-locked multi-mode fiber lasers, greatly extending the peak power limits of conventional mode-locked single-mode fiber lasers. Mode-locking may be induced by insertion of a saturable absorber into the cavity and by inserting one or more mode-filters to ensure the oscillation of the fundamental mode in the multi-mode fiber. The probability of damage of the absorber may be minimized by the insertion of an additional semiconductor optical power limiter into the cavity.