Abstract:
Certain aspects of the present disclosure propose techniques for synchronizing TD-SCDMA and TDD-LTE systems. Certain aspects provide a method that generally includes obtaining, from a base station (BS) of a first radio access technology (RAT), timing and a system frame number (SFN) for a BS of a second RAT, and performing network acquisition operations with the BS of the second RAT using the timing and the SFN.
Abstract:
Certain aspects of the present disclosure propose techniques for resolving paging interval conflicts between two different radio access technology (RAT) paging intervals and for avoiding missing paging messages for a multimode terminal (MMT). Certain aspects provide a method for detecting messages associated with paging, by an MMT supporting multiple-input multiple-output (MIMO), from first and second networks using first and second RATs, such as Time Division Synchronous Code Division Multiple Access (TD-SCDMA) and Code Division Multiple Access (CDMA) IxRTT (Radio Transmission Technology), Evolution-Data Optimized (EVDO), or Wideband CDMA (WCDMA). The method generally includes using a first MIMO receive chain of the MMT to detect a first message associated with paging from the first network and simultaneously using a second MIMO receive chain of the MMT, different from the first receive chain, to detect a second message associated with paging from the second network.
Abstract:
Certain embodiments of the present disclosure improve a robustness of some critical MAC management response massages transmitted from a base station (BS) to a mobile station (MS). In this way, a reliability of transmission can be increased and a messaging failure that results in out of sync state between the MS and the BS can be avoided.
Abstract:
Certain aspects of the present disclosure propose techniques for enhancing a measurement gap for TD-SCDMA measurement. Certain aspects provide a method that generally includes receiving, from a base station (BS) of a first radio access technology (RAT), a message indicating a measurement gap in which a user equipment (UE) is to take a measurement in a second RAT, the message comprising an indication of a start position of the measurement gap and a duration of the measurement gap; and taking a measurement during the measurement gap.
Abstract:
Avoidance of uplink synchronization oscillation in TD-SCDMA systems begins when a user equipment receives a downlink SS command from a Node B. The user equipment obtains a previous uplink timing, which may be from a previous sub-frame associated with the downlink SS command. The user equipment would obtain this previous sub-frame associated with the SS command directly from the Node B as an identification of the Node B's sub-frame delay. The user equipment will then calculate the uplink timing for its next updated uplink signal by combining the previous uplink timing with the synchronization adjustment associated with the SS command. The user equipment then transmits its next uplink signal using the new uplink timing.
Abstract:
Open loop power control in Time Division-Synchronous Code Division Multiple Access (TD-SCDMA) multi-carrier systems is facilitated through the determination of a value for open loop control on a primary carrier frequency which is then used to perform open loop control on at least one secondary carrier frequency in the multi-carrier system. This determined open loop control value may be applied using the value determined on the primary carrier frequency, or may be further adjusted using an estimated difference between received power of the primary carrier frequency and the secondary carrier frequencies, in selected aspects. When the pilot signals in the secondary carrier frequencies are transmitted at different power levels, this open loop control value may be further adjusted with a transmit power level offset.
Abstract:
Certain embodiments of the present disclosure proposes a flexible method for scheduling of an uplink transmission simultaneously considering all active connections of a mobile station. A decision on scheduling priority can be made based on a metric that comprises QoS parameters and current traffic measurements. The weight factors may be applied for every QoS parameter per schedule type providing flexibility of the scheduling algorithm. The proposed scheduling algorithm may be applied to satisfy different QoS requirements for each service provider and application by changing weight factors if required.
Abstract:
A method and apparatus for facilitating user equipment backoff during a random access procedure is provided. The method may comprise transmitting, by a user equipment (UE), at least one synchronization code to a Node B, determining that the at least one transmitted synchronization code was not acknowledged by the Node B, and modifying a maximum value of a random delay window in response to said determining.
Abstract:
A method and an apparatus for wireless communications comprising determining that a first handover from a source cell to a target cell has failed; and performing a second handover from the source cell to a first neighbor cell different from the source cell and from the target cell. In on aspect, the method and apparatus further comprising performing the second handover by sending a signal to the first neighbor cell and receiving a return signal from the first neighbor cell; and further comprising sending a message to initiate radio resource setup between the first neighbor cell and a radio network controller (RNC); and receiving a connection resetup and a Physical Channel Reconfiguration message from the radio network controller (RNC).
Abstract:
A mobile device capable of communicating on multiple radio access networks simultaneously may concurrently operate calls of a first call type on a first network and a second call type on the second network. As the mobile device approaches the limits of the service area of the second network it may take measurements to result in the call of the second call type to be serviced by the serving cell of the first network which is serving the mobile device for the first call type. In this manner the mobile device may ensure that when it leaves the service area of the second network, the calls of the first call type and second call type are served by the same serving cell in the first network.